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Abstract 

 
Research on the social transmission of food preference (STFP) has shown that 

preferences for specific foods can be transmitted between conspecifics (Bilkó et al., 1994; 

Wrenn et al., 2003; Hikami et al., 1990; Galef et al., 1984; Galef & Wigmore, 1983; Lupfer et al., 

2003). Although these findings provide an understanding of how food related information is 

shared, none explore the influence that personality may have on various factors of STFP, as well 

as how this transmission may occur in a naturalistic foraging setting. In the current thesis, 

individual personality was assessed and rats were placed into same/different preference 

foraging pairs within a novel arena, to explore the dynamics of STFP development and 

transmission between pairs of rats.  

In addition to investigating behavioural factors affecting STFP, I examined how 

development of a preference based on exposure to an odour might alter the representation of 

that odour within the rodent brain. As shown in previous studies, exposing rat pups to a novel 

odour paired with tactile stimulation led to that odour being preferred and also being 

represented by a larger ensemble of mitral cells that is more reliably recruited upon re-

exposure to the odour (Shakhawat et al., 2014). Since the pairing of carbon disulfide with a 

novel food odour will create a preference in the subject during STFP, I hypothesized that this 

pairing, like tactile stimulation, could alter the olfactory representation of the odour (Galef et 

al., 1984).  

My findings reveal that personality does not affect the strength of an individual’s food 

preference. Bolder individuals spend less time eating while foraging. In addition, less bold 

individuals spend a large proportion of their foraging time eating while their partner is also 
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eating, which I defined as an overlap score. A larger recruitment of mitral cells within the main 

olfactory bulb did not occur upon presentation of the preferred odour. However, distinct 

activation patterns were present upon exposure to different odours, suggesting that 

differentiation of the stimuli was visible at the neuronal level but integration of social 

information must take place further downstream.  
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Chapter 1: General Introduction 

 
Research on the social transmission of food preference (STFP) demonstrates that food 

preferences can be transmitted between conspecifics (Galef & Wigmore, 1983; Lupfer et al., 

2003). However, no studies that I am aware of have explored the role that personality may 

have in the transmission of information. As well, how transmission of information occurs 

between pairs within a naturalistic foraging setting remains largely uninvestigated. Through a 

battery of personality tests, the current thesis first assesses personality and then evaluates the 

effect that this may have on STFP. By placing rats into same/different preference foraging pairs 

within a novel arena, factors acting upon information transmission are also investigated within 

a more naturalistic foraging setting than ones used during the classic STFP transmission 

paradigm. Using this procedure, my thesis aimed to explore the dynamics of STFP acquisition 

and transmission between rat pairs.  

1.1 Social Transmission of Food Preferences  

 
In the STFP paradigm originally and nearly simultaneously described by Posadas and 

colleagues (1983) as well as Galef & Wigmore (1983),  naïve rats (observers) were able to 

acquire a preference for a certain food after smelling this food on the breath of a demonstrator 

rat. In Galef and Wigmore’s (1983) protocol, a demonstrator rat was fed powdered food mixed 

with a novel flavouring such as cocoa or cinnamon for 30 minutes. Following feeding, the 

demonstrator was placed in a cage with a food-restricted observer for an additional 30 minutes. 

After the interaction, the observer underwent a feeding choice test in which two novel foods 

were made available within the home cage. One of the novel foods available was the flavoured 
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food consumed by the demonstrator, and the other was a novel flavouring to which the 

observer had never been exposed. For 24 hours, the observer was left undisturbed to consume 

the flavoured foods after which the food was removed and consumption of each food was 

recorded. In numerous replications of this procedure, Galef and his collaborators found that the 

majority of the total food consumed by the observer was of the flavoured food consumed by 

the demonstrator prior to the interaction. Thus, a preference for this previously novel food had 

been learned solely through a social mechanism. 

Despite being a reliable demonstration of social learning, STFP is not dependent upon a 

certain behaviour of the demonstrator (Galef & Kennett, 1987). For example, STFP occurs even 

if the demonstrator is anaesthetized for the duration of the interaction phase (Galef, 1985). 

Subsequent studies have shown that the key element for successful STFP is the presence of 

carbon disulfide, present in small quantities within the digestive tract, in combination with a 

novel food odour (Galef et al., 1988). Replacing the demonstrator with a carbon disulfide-

soaked cotton ball rolled in the novel food flavouring is sufficient for STFP to occur. Odours 

presented on a cotton ball in the absence of carbon disulfide do not lead to the establishment 

of a preference in the observer (Galef et al., 1988).  

Since rats are neophobic (Barnett, 1958) and consumption of a novel food is generally 

avoided (Barnett, 1963), smelling a novel food odour on another rat’s breath could indicate that 

this food is safe to eat, thereby increasing the rodent’s repertoire of consumable food. 

However, there are limits to learning via STFP, as the sharing of food information will only lead 

to the development of a preference and not an aversion (or avoidance). Following feeding of 

the demonstrator, if the demonstrator receives an intraperitoneal injection of lithium chloride 

and exhibits signs of illness during the interaction with the observer, the observer does not 



www.manaraa.com

NEURAL AND SOCIAL MECHANISMS BEHIND STFP      10  

show an avoidance of the demonstrated food but rather consumes a greater proportion of it 

when given a choice test (Galef, 1985; Coombes et al., 1980). This suggests that the effect of 

social influence on preference is greater than on aversion, therefore STFP may function as a 

means for sharing information to increase familiarity rather than indicating the safety of a novel 

food.   

Although STFP research to date is considerable, there remain several unanswered 

questions concerning the effect of personality, the dynamics and utilization of preference 

information in a foraging setting, and the neurological substrates behind STFP. By first assessing 

the personality of individuals and then giving them an odour preference via the STFP protocol, 

the research discussed in Chapter Two of the current thesis examines if personality can affect 

the strength of an individual’s socially-acquired food preference. As well, I explored what effect 

conflicting preference information from a conspecific had when rats were placed into pairs 

within a foraging arena. Finally, by combining individual personalities, behaviours exhibited 

during foraging trials, and results for preference tests at the start and end of each experimental 

phase, I provide information as to how social and spatial dynamics affect food preference 

transmission and maintenance.  

In Chapter 3, I examine whether the preferred odour acquired via STFP is represented 

by a larger ensemble of mitral cells than a non-preferred odour, as well as whether that 

ensemble is more reliably recruited upon exposure to the preferred odour. To conclude the 

chapter, I provide evidence on whether or not the integration of both social and odour 

information is present within the main olfactory bulb. 
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1.2 Personality  

  
 Since STFP is an inherently social phenomenon, the food information shared during STFP 

may not be the only informative signal being received: each individual (the demonstrator and 

the observer) presumably has additional information concerning the other individual that may 

alter STFP. For example, perhaps the food preference of shyer rats can be disrupted by 

conflicting information from a bold conspecific. In considering additional information that may 

alter STFP, potential measures of personality in the rat should be examined.  

Human personality can be defined as a consistent pattern in thinking, feeling, or behaving 

that is relatively stable over time and across situations (Gosling, 2001). Personalities in animals 

work in much the same way as they are consistent within an individual across time and 

influence their behaviour across contexts (Biro & Stamps, 2008). Animal personality is of 

importance ecologically as well as evolutionarily in that it helps to explain what would 

otherwise be thought to be maladaptive behaviour (Réale et al., 2007). 

Depending on the literature’s primary audience, species of interest, or the preference of the 

experimenter, several terms are used when studying animal personality. For example, 

temperament (Réale et al., 2007), individuality (Jonas, 1968), or personality traits (Biro & 

Stamps, 2008) are commonly used terms. However, throughout my thesis these individual 

tendencies potentially leading to predictable outcomes in behaviour will be referred to as 

personality.  

Similar to human personalities, there are a variety of animal personalities within a 

population. For example, often examined under the classification of “behavioural syndromes” 

(Sih et al., 2004), a large body of research examines one such animal personality type referred 
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to as “aggression syndromes”. Individuals exhibiting an aggression syndrome will behave more 

aggressively across several situations and contexts than other, less aggressive, individuals (Sih et 

al., 2004). A behavioural syndrome arises from a correlation between several personality traits 

(Sih et al., 2004). 

Proposed by Réale et al. (2007), animal personality can be described using five general 

traits: activity, shyness/boldness, exploration, aggression and sociability. When assessing these 

traits in rodents, several tests are regularly used, including the elevated plus maze, light/dark 

emergence into an open field, and social preference tests. An elevated plus maze consists of 

two open and two closed arms arranged in a cross-elevated position above the ground. 

Predominantly used for drug research, this test is assumed to measure anxiety-like behaviour, 

under the assumption that a less anxious rat will spend a greater proportion of its time on the 

open arms of the maze (Montgomery, 1955). Also common in drug research, the light/dark 

emergence test utilizes a rodent’s natural tendency to avoid brightly lit areas. During this task, a 

small enclosed compartment, or start box, is placed within a brightly lit arena. Moving from the 

start box and into the arena, as well as movement between the two over the duration of the 

trial, has been reported as a measure of activity-exploration (Bourin & Hascoët, 2003; Crawley, 

1985). The amount of time spent in the arena is also reported as a measure of a subject’s 

aversion to the light (Bourin & Hascoët, 2003; Crawley, 1985). The boldness and anxiety-like 

behaviours of a rodent can also be measured by observing food caching in the presence of a 

predator stimulus (Herman et al., 2000). In an experiment by Dochtermann and Jenkins (2007), 

hulled sunflower seeds were scattered in an arena where predator urine had been sprayed. 

Rats of higher boldness were observed collecting and caching more seeds than less bold 

conspecifics (Dochtermann & Jenkins, 2007).  
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A social preference test assesses whether a rat will choose to spend a greater 

proportion of its time in the vicinity of a conspecific than a decoy. During this test, a rat is 

placed in an arena containing two cages. One of the cages houses a live conspecific and the 

other houses a stuffed decoy rat. If more time is spent around the live conspecific, the rat is 

presumably more social (Moy et al., 2004). Mirror-image stimulation (MIS) is also a commonly 

used test for assessing social behavioural pattern variations amongst individuals of several 

different species (Dochtermann & Jenkins, 2007; Baenninger, 1966). MIS is preferable to direct 

conspecific interaction in that it is able to give a measure of approach, avoidance, and 

sociability without the risks associated with physical conflict (Svendsen & Armitage, 1973). In a 

study by Dochtermann & Jenkins (2007), behavioural variations in kangaroo rats were assessed. 

Using MIS, the time to resume activity after a subject saw its reflection (latency) was utilized as 

a measure of aggressiveness toward a conspecific.  

Following assessment of personality, my thesis aimed to determine if variations in 

preference strength acquired via STFP could be explained by an individual’s personality. For 

example, whether a rat displaying behaviours associated with high sociability would develop a 

stronger preference following the demonstrator/observer interaction. If a rat scored as being 

“highly social” perhaps they would be better at detecting and utilizing socially transmitted 

information than an anti-social conspecific. Perhaps shy rats, due to their anxious tendencies, 

are less likely to gather information on their own and therefore rely on socially transmitted 

information more than bold rats. I would hypothesize that if this were true, bold rats would 

develop weaker preferences following demonstrator/observer interactions as they are more 

likely to acquire food related information on their own, making socially transmitted information 

less salient.  
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1.3 Living in Groups  
 

For individuals, living in a group confers many benefits, including a dilution of predation 

risk, collective defense, increased mating opportunities, increased anti-predator vigilance, and 

an increase in the efficiency of foraging (Krause & Ruxton, 2002). For example, individuals in 

larger groups are less likely to be attacked by a predator both due to a decreased statistical 

probability of being chosen for attack and, for individuals near the center of the group, due to 

“shielding” by other members of the group (Williams, 1966; Alexander, 1974). Additionally, the 

more members in a homogeneous group, the more difficult it is for a predator to single out and 

attack an individual, which is referred to as predator confusion, as the predator is bombarded 

by stimuli and unable to focus on a target (Landeau & Terborgh, 1986). Some groups are also 

capable of organizing and implementing collective defense, as the group approaches and 

attacks a predator en masse to deter the predator. Collective defense not only acts to drive 

away an intruder, it also functions to promote vigilance and alert others in the group of the 

predator’s presence (Krause & Ruxton, 2002; Lima & Dill, 1990).   

Although living in a group provides the individual with many benefits, decreases in 

fitness with an increase in group size are also possible. As the number of individuals in a group 

increases, there is greater competition for finite resources, resulting in less available for each 

individual (Krause & Ruxton, 2002). Kleptoparasitism in avian species or food snatching in rats 

also occurs as individuals steal food from one another in a presumed attempt to gain 

information about a novel food source (Brockmann & Barnard, 1979; Galef, et al., 2001). 

Kleptoparasitic events result in costs to some group members and have the potential to 

become more frequent with increasing group size (Krause & Ruxton, 2002). Additionally, 

several other costs are possible including an increased parasitic load of contact-transmitted 
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parasites (Brown & Brown, 2004), a greater risk of misdirected parental care (Hoogland & 

Sherman, 1976), and larger groups being more easily detectable by predators than individuals 

(Krause and Ruxton, 2002). 

Despite the costs listed above, living in a group confers several foraging benefits. For an 

individual organism, there is a trade-off between the amount of time spent in search of food 

and time spent watching for predators (Barnard & Sibly, 1981). When an individual is a part of a 

group, however, there are more individuals available to detect a predator. This distributes the 

time spent scanning for predators throughout the group and increases the efficiency of 

predator detection (which is referred to as the many eyes hypothesis). That is, the probability of 

detecting a predator increases and the latency to detect a threat is reduced. Importantly, this 

has the benefit of increasing overall foraging efficiency (Lima, 1995; Godin & Morgan, 1985).   

  The efficiency of foraging is further increased in a group context because individuals 

have the opportunity to observe and learn from the foraging behaviours of other members of 

the group, reducing the need for personal experience. Between individuals, multiple kinds of 

information about a foraging context can be shared, including  information concerning location 

(Galef & Giraldeau, 2001) and type (Real, 1992) of food available, as well as any predation risks 

(Ward et al., 2008). The sharing of food-related information provides the advantages of locating 

additional sources of food, while eliminating the energetic demand and predation risk 

associated with learning about a foraging environment, thus increasing an individual’s 

likelihood of survival (Krause & Ruxton, 2002; Beauchamp, 2013).  

 The following review is restricted to data on rodents, the order used in the current 

thesis and for which a wealth of data already exists. Previous research involving rodents 

includes a classic demonstration of the sharing of food-related information within a rat colony 
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following the introduction of a poisonous substance to control the pest population (Steiniger, 

1950). Steiniger (1950) showed that, following the introduction of a poisoned food, the 

population of a colony initially declined but then increased following the mating of surviving 

members. Although a large portion of the colony consumed the food and perished as a result, 

some of the members consumed only a small amount, leading to illness followed by avoidance. 

As the elders avoided the poisoned food, subsequent generations also avoided the food source 

without having sampled it themselves. Further studies investigated how food source 

information is transmitted between individuals. 

According to Galef and Clark (1971), the behaviour described above resulted from a 

three-stage process: 1) pups followed elders to a safe food source, 2) pups learned to associate 

cues with the food source, 3) food sources other than those observed being consumed by the 

elders were then avoided as a result of innate neophobia (Galef & Clark, 1971). Information 

transmitted by elders is so salient that even the presence of an anaesthetized adult near a food 

source can lead to preference acquisition in a pup (Galef, 1981; Galef, 1971). During these 

experiments, rat pups chose to feed at the same novel food site as both a feeding, and later an 

anaesthetized, adult, suggesting that the adult’s presence is sufficient produce a feeding 

preference (Galef, 1981; Galef,1971; Galef & Clark, 1971). Many other studies have generated 

data consistent with this social transmission of food preference by observation. For instance, a 

naïve forager can sometimes estimate the quality of a food patch by observing others foraging 

(Marler et al., 1986) without the energetic expense and risk of going out and finding the source 

independently.   

Unlike learning about food sources through direct observation of a conspecific with a 

particular food, the utilization of social transmission via STFP means that conspecifics would not 
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need to be in the same vicinity during foraging as information could be shared following the 

feeding event. The idea that STFP can act as a mobile exchange of food related information 

suggests that conspecifics could forage in independent locations, later sharing this information, 

and thereby increasing the net probability of locating food.   

When a rat is introduced into a novel environment, it will typically start exploring the 

environment by making several short trips or excursions and returning to one specific location, 

referred to as the home base (Eilam & Golani, 1989). The home base is the site of a highest 

proportion of grooming and rearing compared to behaviours outside of this location and can be 

used as a reference when examining exploratory behaviour (Eilam & Golani, 1989). Rats placed 

in a novel environment will quickly establish a home base, at a sheltered location if available. 

Eventually, as they habituate to the environment, secondary home bases may be established 

(Drai et al., 2000).  

Consistent with the Information Center Hypothesis, during foraging a home base might act 

as a safe location used by the rats in which they can interact and share information with one 

another (Galef & Giraldeau, 2001). In a natural setting, the rat colony acts as an information 

center where information, particularly about the presence and safety of a food source, is shared 

through sniffing of a returning foragers’ breath.    

As discussed at the beginning of the previous section, individuals involved in transmission of 

information either in the context of STFP or within a naturalistic foraging setting presumably 

have access to information concerning the other individual. For the current thesis, I was 

interested in studying if personality could alter information acquisition, transmission and 

maintenance. I hypothesized that during foraging with a conspecific, perhaps the food 

preference of shyer rats could be disrupted by conflicting information from a bold conspecific. If 
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this was the case, the preference of a shy individual could potentially be readily and largely 

degraded, or a preference for a partner’s preferred food may have developed following the 

social presentation of conflicting information. Conversely, I presumed it would be likely for bold 

individuals to be less likely to acknowledge and utilize food related information from a shy 

conspecific as they could be more likely to discover novel food information through exploration 

on their own. In addition to this, perhaps bold individuals displayed lower latency when 

sampling novel foods. Lower latency to sample by bolder individuals may also suggest that they 

rely less on social information than shy individuals in the context of foraging. Preference 

strength following demonstrator observer interactions may largely depend on the sociability of 

the subject whereas sampling of a new food and preference degradation in the absence of 

social interactions may rely more on an individual’s boldness.  

1.4 Neurobiology of Social Learning  

 
 When studying behaviours indicative of learning within a group or at the level of the 

individual, it is important to also consider the neurological substrates involved. More 

specifically, the neurobiological mechanisms associated with STFP has been studied extensively, 

at least in part because the procedure makes two steps essential for social learning easily 

identifiable. The first step being that of acquisition of the transmitted information during the 

demonstrator/observer interaction and the other step being the point of retention following 

this interaction. By manipulating the observer prior interaction, mechanisms involved in 

acquisition can be studied. Additionally, mechanisms involved in memory, retention, and recall 

of the information can be examined by manipulation of the observer following the interaction, 

during what is referred to as the “post-social” phase (Choleris & Kavaliers, 1999). In a study by 
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Winocur (1990) observer rats underwent lesions of either the hippocampus or dorsomedial 

thalamic regions prior to interactions. Animals from either lesion group were comparable to 

control rats as they exhibited a preference during a choice test following the 

demonstrator/observer interaction. However, Winocur (1990) revealed a difference between 

the two groups when the choice test following interaction was delayed. Rats with hippocampal 

lesions exhibited a preference for a period of only 1-2 days following the interaction while rats 

with dorsomedial thalamic lesions exhibited a preference for up to 8 days after. In a second 

experiment, Winocur (1990) tested the effects of lesions to these regions either immediately, 2, 

5, or 10 days following a demonstrator/observer interaction. Rats with dorsomedial thalamic 

lesions showed no preference recall when the lesions were done immediately but displayed a 

preference when lesions were done following the 2, 5, or 10 day delay. Similarly, hippocampal-

lesioned groups showed no preference recall when lesioned immediately but displayed gradual 

improvement when lesions were delayed. Findings comparable to that of the temporally 

graded retrograde amnesia shown by Winocur’s post-social hippocampal lesions have also been 

investigated in the context of fear-conditioning as well as spatial learning (Anagnostaras et al., 

1999; Cain & Saucier, 1996) 

 An additional study by Bunsey and Eichenbaum (1995) investigated the impact of 

hippocampal lesions (including subiculum) prior to demonstrator/observer interaction. 

Lesioned animals acquired a food preference but long term retention was impaired. Localized 

lesion studies to either the hippocampus proper, dentate gyrus, or subiculum resulted in no 

short- or long-term preference memory deficits, indicating that the entire hippocampus is 

essential for retention of STFP related memory.  
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 Studies have not only been conducted examining the role of various brain regions in 

STFP, but underlying neurobiological mechanisms have also been investigated. Acquisition of 

food preference in a mutant strain of mice lacking cAMP responsive element-binding protein 

(CREB) showed no short term deficits in preference recall (Kogan et al., 1997). These mice 

however, did display long term deficits in food preference memory as well as fear conditioning.  

 The results of studies discussed in this section provide a variety of ways by which social 

learning occurs at the neural level. In Chapter 3 of my thesis, I investigated social learning 

within the main olfactory bulb of adult rats by examining mitral/tufted cell recruitment upon 

presentation of an odour which was made preferred by means of STFP. The role of social 

learning in establishing a food preference was investigated by comparing various 

demonstrator/observer interaction types. One of which was the classic social 

demonstrator/observer interaction while the other, although shown to create a preference, 

was conducted entirely lacking of social cues by use of a surrogate demonstrator.  

1.5 Mechanisms of Olfaction  

 
To investigate the neurobiology behind learning through STFP, it is important to 

understand functions and mechanisms of the sensory system on which it is acting, the olfactory 

system. Olfaction provides animals with the ability to detect information that guides behaviour 

critical for not only assessing novel foods, but also for locating food (Whishaw & Tomie, 1989; 

Rieger & Jakob, 1988), predator avoidance (Amo et al., 2008; Flowers & Graves, 1997), mating 

(Murphy & Schneider, 1970), establishing social hierarchies (Barata et al., 2007), and 

recognition of the mother and littermates (Gelhaye et al., 2011). While a great deal of work has 

been done investigating the behavioral and physiological mechanisms behind STFP (Galef et al., 
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1988), as well as how preferences are established within the rat pup (Rangel & Leon, 1995; 

Sullivan et al., 2000; Yuan et al., 2003), few studies have examined the neurological substrates 

supporting STFP in the adult rat. Chapter three of the current thesis examined Arc expression 

within the main olfactory bulb (MOB) to see if the preferred odour was represented by a larger 

ensemble of mitral cells, which were more reliably recruited upon exposure. 

In order for an odour to be perceived, a substance must release a volatile chemical 

called an odourant. To begin this perceptive path, the odourant must enter through the nares 

or nostrils of the animal and into the nasal cavity. Once in the nasal cavity, the odourant will 

pass over a mucus layer lining the nasal cavity, called the olfactory mucosa. Within the olfactory 

mucosa are the cilia of olfactory receptor neurons (ORN’s) to which the odourants can bind. 

However, each ORN only expresses one of a possible 1500 different olfactory receptor genes, 

meaning each neuron expresses only one kind of G-protein coupled receptor, referred to as the 

one neuron-one receptor rule (Ardiles et al., 2007; Serizawa et al., 2004). Once the odourant 

binds to the receptor, the G-protein breaks away, activating sodium gated ion channels on the 

surface of the cell, causing depolarization and firing of an action potential. The action potential 

continues up through the axon of the ORN which extends through the cribriform plate of the 

animal’s skull and terminates onto neurons in the glomeruli of the olfactory bulb (OB). The 

axons of ORN’s expressing the same receptor converge onto a particular set of glomeruli and 

due to this axonal convergence, a single odourant molecule can activate several glomeruli 

within the set (Ardiles et al., 2007; Egana et al., 2005). Following convergence of ORN’s onto a 

specific set of glomeruli, a second synaptic connection is made with the dendrites of 

mitral/tufted (M/T) cells (Ardiles et al., 2007). Within the olfactory bulb, tufted cells respond to 

a wide range of odour concentrations while mitral cells only respond when the odour 
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concentration is high (Igarashi et al., 2012). Additionally, tufted cells project densely to targets 

in anterior areas of the olfactory cortex while mitral cells project dispersedly to all olfactory 

cortex areas (Igarashi et al., 2012). Unless neuronal markers are used, mitral and tufted cells 

are difficult to differentiate and are found in close proximity of one another, generally leading 

to a combined classification (Pinching & Powell, 1971). Once synaptic connections are made 

with the M/T cells of the glomeruli, M/T axonal projections travel through the lateral olfactory 

tract (LOT) and terminate on the olfactory cortex (OC) where the odour is then perceived 

(Apicella et al., 2010). 

To perceive different odours, each odour must have a specific signal that is transmitted 

to the OC. In addition to the one neuron-one receptor rule (Ardiles et al., 2007), each type of 

receptor is capable of detecting multiple odourants, and each odourant can be detected by 

multiple types of receptors (Malnic et al., 1999; Araneda et al., 2004). Odours can then be 

differentiated based on the unique ensemble of receptors that they bind to and activate, this 

activation pattern (also referred to as an “olfactory image”) is called combinatorial coding 

(Malnic et al., 1999). Combinatorial coding maximizes the number of discriminable odours 

based on the number of receptors within the olfactory epithelium.    

1.5.1 Neural Representation of Preferred Odours in Rat Pups 

 
Until the second week of life, rat pups, unable to see or hear, rely heavily on their sense 

of smell and touch to gather information within their environment. As an essential precursor to 

nipple attachment, social behaviour, and approach to the mother, a rat pup must learn to 

identify and utilize odour cues (Raineki et al., 2010). As young as post-natal day 1, pups are able 

to demonstrate odour preference for a novel odour stimulus associated with their mother 
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(Moriceau et al. 2010). When given a choice in a Y-maze between bedding from their mother 

who had been fed a specific diet and bedding of another dam fed a differing diet, pups tended 

to prefer bedding with a scent of their mother (Sullivan et al., 1990). In addition to this, Galef 

and Henderson (1972) demonstrated that rat pups were able to utilize odour information about 

the dam’s diet contained in the milk, to later exhibit a food preference when given a choice test 

during their first solid food meal. A pup’s ability to form an odour preference is so robust that 

an otherwise aversive olfactory stimulus can become preferred when paired with tactile 

stimulation such as stroking, warmth, licking, and milk delivery (Amiri et al., 1998; Yuan et al., 

2003). The pairing of tactile stimulation with a novel odour not only elicits a behaviourally 

observable preference but pairing is also associated with electrical and metabolic neural 

changes within the olfactory bulb via a beta-adrenergic receptor-dependent mechanism 

(Rangel & Leon, 1995; Sullivan et al., 2000; Yuan et al., 2003). When tactile stimulation is 

delivered, noradrenergic neurons of the locus coeruleus (LC) are activated causing the release 

of norepinephrine (NE) and subsequent delivery of the neuromodulator to the MOB. When 

tactile stimulation is paired with an odour, the presence of NE in the MOB from the LC causes 

plastic changes within the activated population, resulting in larger and more reliable M/T cell 

recruitment upon re-exposure to the odour (Rangel & Leon, 1995). In other words, activation of 

the LC due to tactile stimulation in combination with odour specific MOB activation results in a 

cellularly observable change indicative of a preference.  

1.5.2 Neural Representation of Preferred Odours in Adult 

 
To date, little research has been done examining how or if a preferred odour is 

represented within the main olfactory bulb of the adult rat brain. However, research has been 
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conducted investigating odour representations within the piriform cortex that are governed by 

excitatory and inhibitory synaptic input. The work of Poo & Isaacson (2009) shows that odour 

exposure results in sparse spiking activity across the affected neuronal ensemble. Within the 

cortical population of the piriform cortex as well as the MOB, global inhibition occurs in a 

widespread, nonspecific, and broadly tuned manner, while excitation is more conserved and 

highly specific to certain odours (Spors & Grinvald, 2002). In order for an odour to be detected, 

the olfactory receptor neuron that the odourant binds to needs to fire an action potential (AP; 

Hopfield, 1995). Both a preferred and non-preferred odour can elicit an AP and both receive 

equal amounts of inhibition (average inhibitory postsynaptic charge: 78.6 ± 3.7 pC), however, 

by measuring excitatory post synaptic charge (EPSC), a preferred odour evokes greater 

excitation (average EPSC: 46.5 ± 1.5 pC) compared to a non-preferred (EPSC: 16.9 ± 0.7 pC; Poo 

& Isaacson, 2009). The results of Poo and Isaacson (2009) suggest that excitation associated 

with the presentation of an odour must be strong enough to overcome global inhibition 

activated upon binding of any odourant, to generate APs within the olfactory cortex. 

1.5.3 Hypothesized Mechanisms of Odour Representation 

 
Although the exact neuronal mechanism supporting preference learning in the adult rat 

brain is relatively unknown, a large body of research has contributed to the understanding of 

preference learning in rat pups. Several of these studies have examined how the pairing of 

tactile stimulation with a novel odour can result in formation of a preference. When physical 

stimulation is applied to a rat pup, the noradrenergic system of the locus coeruleus (LC) is 

activated which directly projects to the M/T cells of the OB, thereby increasing norepinephrine 

(NE) levels. Increasing NE levels has three important effects, 1) NE reduces inhibition in the 
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granule-mitral cell connection, 2) NE increases excitability in M/T cells allowing for activation of 

NMDA receptors, and finally, 3) NE decreases M/T habituation to odours (Sullivan et al., 2000; 

Yuan et al., 2003). Due to the influx of NE, subsequent exposure to a novel odour promotes 

long-term potentiation-like modifications in the granule-mitral cell response patterns, as well, 

upon exposure to the preferred odour, a specific ensemble of granule-mitral cells is more 

reliably recruited (Sullivan et al., 2000; Yuan et al., 2003; Shakhawat et al., 2014). When NE is 

made unavailable by blocking noradrenergic receptors, M/T habituation to odours occurs as 

well as an inability to form odour preferences (Sullivan et al., 2000). In the absence of tactile 

stimulation, pairing a novel odour with a beta noradrenergic agonist produces both behavioural 

and neural changes observable in stimulated pups (Sullivan et al., 2000). It is plausible that a 

comparable mechanism may drive preference learning in the adult during STFP. During social 

interaction with a demonstrator, tactile stimulation occurs which could lead to NE release in the 

observer brain in combination with the novel odour. In the absence of tactile stimulation, 

perhaps the presence of a conspecific alone is enough to activate comparable mechanisms in 

the adult rat brain, explaining how preferences can be established even when a demonstrator is 

anesthetized or a mesh barrier is placed between the demonstrator and observer (Galef et al., 

1988; Galef & Wigmore, 1983). Similar to the rat pup studies, this would recruit a larger and 

more reliably represented ensemble of granule-mitral cell activity within the MOB following re-

exposure to the demonstrated odour. 

In addition to ORNs, the olfactory epithelium also contains a different type of 

chemosensory receptor called trace amine-associated receptors (TAARs). Like ORNs, TAARs are 

G-protein coupled but have a very different protein sequence (Liberles & Buck, 2006). Studies in 

rats have classified the presence of 17 different olfactory TAARs which recognize volatile 
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amines (Lewin, 2006). Volatile amines are present in the urine of mice, suggesting that TAARs 

may play a distinct role from odour detecting ORNs, possibly related to social cues (Liberles, 

2009). Two amines found in rat urine with notable social cue significance are isoamylamine, and 

2-phenylethylamine (Liberles & Buck, 2006). While 2-phenylethylamine is found in the urine of 

stressed animals, isoamylamine which is more prevalent in male urine, has been shown to 

accelerate puberty in female mice (Grimsby et al., 1997; Paulos & Tessel, 1982; Snoddy et al., 

1985; Nishimura et al., 1989). Perhaps volatile amines are present in rodent breath and are 

utilized during detection of a preferred odour following STFP.  

1.6 Conclusion 

By combining individual personalities, behaviours exhibited during foraging trials, and 

results of preference tests throughout experimentation, the current thesis contributes to the 

understanding of how social and spatial dynamics affect food preference transmission and 

maintenance. By first assessing the personality of individuals and then giving them an odour 

preference via the STFP protocol, I determined if personality can affect the strength of an 

individual’s socially-acquired food preference. As well, I explored what effect conflicting 

preference information from a conspecific has when rats were placed into pairs within a 

foraging arena. The neurobiological substrate that supports STFP in the olfactory system was 

also investigated by examining Arc expression within mitral cells of the MOB to determine 

where in the olfactory sensory pathway the integration of both social and odour information 

occurs.  
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Chapter 2: Factors Affecting the Social Transmission of Food Preference   

2.1 Introduction 

 
It is well-known that preferences for specific foods can be transmitted between pairs of rats 

(Galef et al., 1984, see also Chapter 1, above), a phenomenon referred to as social transmission 

of food preference (STFP), but there is little research on other factors that can affect this 

transmission. For example, no studies have addressed the potential role of personality on 

information transmission or how transmission may occur within a naturalistic foraging setting. 

This chapter experimentally answers questions concerning personality, exploration of novel 

environments, and STFP, to situate STFP in the ecology and cognition of rats more generally. 

Rats were individually assayed on their personalities, trained to prefer a particular food flavour 

(using STFP), and then allowed to explore a novel environment in pairs. Rats were paired, on 

different trials, with partners that had either the same or a different food preference.  

The transmission of foraging related information between individuals and groups has 

been extensively studied within the context of rat colonies (Steiniger, 1950). From foetal 

development (Smotherman, 1982) through adulthood (Galef & Clark, 1971; Galef, 1981), the 

sharing of food source information leads to predictable behavioural outcomes in the form of 

food preferences (Galef et al., 1984). Novel food information is carried on the breath of a 

demonstrator, resulting in a conspecific’s preference for the novel food (Galef et al., 1984). 

During STFP, novel food information does not exist in isolation. Other factors between 

the interacting pair, external to the food itself affect the transmission of information, some of 

which include of dominance (Nicol, 1995), kinship and familiarity (Valsecchi et al., 1996), and 

age (Galef & Kennett, 1987). However, little is known about the effect of personality on STFP. 

Personality, or “behavioural syndromes” in animals, are consistent patterns of a subject’s 
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behavioural tendencies that are unchanged over time (Gosling, 2001; Sih et al., 2004). Assessed 

through a multitude of testing methods (Montgomery, 1955; Bourin & Hascoët, 2003; Crawley, 

1985; Herman et al., 2000; Dochtermann, & Jenkins, 2007; Moy et al., 2004; Baenninger, 1966; 

Svendsen & Armitage, 1973) animal personality has been shown to predict behaviour within 

rodent pairs (Dochtermann, & Jenkins, 2007). Since the strength of preference acquired during 

STFP is variable between subjects, I hypothesized that personality might influence the 

transmission of information during STFP. For example, perhaps a rat of higher sociability would 

acquire a stronger preference following an interaction, as measured by resistance to preference 

degradation over time or even a higher proportion of preferred food being consumed during a 

choice test. In addition to this, perhaps the preference information being transmitted on the 

breath of a bold demonstrator elicits a stronger preference in a shy rat than if the information 

were coming from another shy conspecific.  

The sharing of food related information can be accomplished within, and is a major 

benefit to, living in a group. For group living individuals, not only is there social transmission of 

novel food odours, information shared can also increase the efficiency of foraging (Krause & 

Ruxton, 2002). In addition to more foraging time due to a decreased need for individual 

vigilance, information may be shared amongst group members regarding food location (Galef & 

Giraldeau, 2001), type (Real, 1992), predation risks (Ward et al., 2008), and quality of the patch 

(Marler et al., 1986). While sharing of this information can increase an individual’s likelihood of 

survival (Krause & Ruxton, 2002; Beauchamp, 2013), foraging costs such as greater competition 

for finite resources (Krause & Ruxton, 2002), and food snatching (Galef, et al., 2001) are also 

associated with group living. Within my thesis, I explored the dynamics of sharing food related 

information between pairs of rats. I was interested in determining if food preferences 
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established via STFP could affect foraging behaviour and if preferences were maintained or 

altered within a foraging setting when subjects were partnered with a conspecific of the same 

or differing preference. 

During exploration of a novel environment, rats engage in several excursions and return to 

one specific location, referred to as the home base (Eilam & Golani, 1989). Consistent with the 

Information Center Hypothesis, a home base might act as a safe location in which conspecifics 

can interact and share information (Galef & Giraldeau, 2001). After establishing a preference 

using STFP, my thesis examined how preferences may be altered by introducing a 

same/different preference partner within a novel environment foraging arena. In addition to 

alteration of preferences, my thesis explores a conflict between personal versus social 

information. During the demonstrator observer interaction, a subject is acquiring knowledge of 

a food by means of social interaction. However, when a subject enters the SF arena with a 

preference, this socially transmitted information becomes personal information for the subject 

as it is (or is not) applying the information within a novel foraging context. The animal’s ability 

to choose to ignore new social information from the paired conspecific may be analyzed within 

this experiment, as well, the point at which personal information is replaced by new socially 

transmitted information can also be investigated. . I hypothesized that shy individuals would be 

more likely to consume a larger portion of a novel food if their foraging partner were bold and 

of a differing preference, therefore more readily disregarding personal information in favour of 

social information. During social foraging bold individuals would perhaps be more likely to 

disregard conflicting preference information from a shy conspecific therefore maintaining their 

initial preference and largely feeding from their preferred food source. Alternatively, bold 

individuals may be more likely to engage in risk taking behaviour by sampling from the novel 
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food, perhaps to the point where it reaches equipalatibility with the preferred food. This may 

indicate that bold individuals rely more on personal information that they gather independently 

while foraging.  

Using a combination of both a social food preference task and exploration of a novel 

environment, my research provides additional information as to how transmission of social 

information may take place. Factoring in individual personalities and their additional effect on 

transmission of social information, the experiment provides an explanation of this behaviour 

that is more applicable to what might be observed in a naturalistic setting. 

2.2 Methods 

2.2.1 General Overview of Procedure  

The experimental timeline for each observer rat was as follows (Figure 2.1):  

1) Personality testing  

i. Light Dark Emergence into an Open Field (3 trials of 30 minutes over 3 

consecutive days)   

ii. Social Preference (1 trial of 10 minutes)  

iii. Elevated Plus Maze (1 trial of 10 minutes)  

2) Establish food preference (30-minute interaction with a demonstrator followed by a 

4-hour food preference test)  

3) Foraging (same/different preference partners) (5 trials of 30 minutes each on 5 

consecutive days).  

4) Re-test food preference (4-hour food preference test). 
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5) Re-establish food preference (30 minute interaction with demonstrator followed by 

another 4-hour food preference test).  

6) Foraging (different/same preference partners) (5 trials of 30 minutes each for 5 

consecutive days.  

7) Food preference test (4-hour food preference test)  

8)  Re-assess personality  

i. Light Dark Emergence into an Open Field (1 trial of 30 minutes)  

ii. Social Preference (1 trial of 10 minutes)  

iii. Elevated Plus Maze (1 trial of 10 minutes)  

 
 

Figure 2.1: Experimental timeline. The experiment began with five days of testing 

to assess the personality of each subject. The first three days consisted of a 

light/dark emergence task, followed by one day of elevated plus maze, and 

ending with one day of social preference testing. On day six, rats underwent STFP during which they had 

one 30 minute interaction with a demonstrator rat who had consumed either cocoa or cinnamon 

flavoured food. Following the interaction, rats were tested for preference to ensure successful 

transmission. On days seven through eleven, rats were placed into a foraging arena with a conspecific 

(whether a subject’s first foraging phase was with a partner of same or differing preference was 

counterbalanced). After five days of social foraging, food preference was tested once again. On day 

twelve, food preferences were re-established by having subject interact with a demonstrator having 

consumed the same flavouring that they were initially exposed to. Following this demonstration, 
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preference was once again tested to ensure successful transmission. From day thirteen until day 

seventeen, pairs of rats once again entered the foraging arena, paired with a partner of a same or 

differing preference (whichever they had not had at first). After a further five days of social foraging, 

preference was once again tested. Finally, personality was re-assessed over the course of three days. On 

day eighteen, rats underwent a light/dark emergence task, followed by elevated plus maze on day 

nineteen, and social preference on day twenty.    

2.2.2 Subjects  

 
Subjects were 80 male Sprague-Dawley rats (Charles River Breeding Farms, St. Constant, 

QC, Canada), approximately 50-52 days old and 201-225g upon arrival. Rats were tested in 4 

separate batches of 20 rats each, with 16 observers per batch, 8 of which were given a cocoa 

preference, and 8 a cinnamon preference. The remaining four animals per batch were used only 

as demonstrators (2 cocoa, 2 cinnamon). Demonstrator rats did not undergo personality testing 

or social foraging.  

Subjects were pair housed upon arrival and, a week later, were transferred to individual 

housing units for the duration of the experiment. Rats were handled for 10 days prior to the 

start of the experiment. The colony room was maintained at 21–22 °C on a 12-h reversed light–

dark cycle (lights off at 0700h). Testing was done during the dark cycle, however all tests (other 

than social interactions) were completed under full florescent lighting. Animals were fed a 

restricted diet of standard rat chow (20g per day during experimentation) and given water ad 

libitum.   

The procedures used followed the Canadian Council on Animal Care guidelines and were 

approved by the Wilfrid Laurier University Animal Care Committee. 
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2.2.3 Apparatus  

2.2.3.1 Light Dark Emergence into an Open Field   

 
 The light dark emergence task took place in a 122cm x 122cm x 44cm (length, width, 

height) arena constructed from white melamine-laminated particle board with a 122cm x 

122cm sheet of black haircell ABS for the flooring. Within the arena, a 41cm x 24cm x 18cm 

(length, width, height) start box was placed, constructed from black melamine-laminated 

particle board with a hinged top and a 10cm x 15cm opening in the center of the front face. The 

start box was placed in the middle of one of the walls within the arena (see Figure 2.2A). 

2.2.3.2 Social Preference  

 
Two cages, identical to those in which the rats were housed, were placed halfway down 

the length of the wall on opposite sides of the arena previously used for the Light Dark 

Emergence Task. Cages were clear acrylic measuring 45cm × 25 cm × 20 cm (length, width, 

height), with a wire lid. The height of the cages made it possible for the subject to climb on top 

of either cage, allowing for access to scent cues.  Each cage contained woodchip bedding as 

well as a piece of PVC piping used for environmental enrichment. In one of the cages, a decoy 

stuffed rat was placed. In the other cage, a live novel rat, which was not otherwise involved in 

the experiment and had not been previously exposed to the test rats, was placed (see Figure 

2.2B). 

2.2.3.3 Elevated Plus Maze 

 
The elevated plus maze consisted of two open sided and two closed sided black PVC 

arms, each measuring  57cm x 10cm x 42cm (length, width, height), with black ABS haircell as 
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flooring within the arms. Arms were arranged in a cross-elevated position, 53 cm from the 

ground (see Figure 2.2C). 

2.2.3.4 Demonstrator/Observer Interaction Cage  

 
 Demonstrator/observer interactions were carried out in a cage identical to those 

described in the Social Preference apparatus description above.  Cages were clear acrylic 

measuring 45cm × 25 cm × 20 cm (length, width, height) and contained woodchip bedding. A 

sheet of Plexiglas® measuring 48cm x 28cm with several small air holes drilled in it was secured 

over the top of the cage using large metal binder clips.  

2.2.3.5 Social Foraging Arena  

 

A 183cm x 183cm open-field arena with black ABS haircell flooring was constructed in 

which the social foraging took place (see Figure 2.3). Using three walls of the room to surround 

the arena, a fourth wall was constructed out of 23.5 cm high PVC. Across the outside of the 

arena where the fourth wall was constructed, a plastic shower curtain was suspended from the 

ceiling to isolate the testing area. In one corner of the arena, a 35.5cm x 20cm overhang of 

white gator board was attached to the wall approximately 20cm from the floor, providing a 

shelter for the rats.  

Within the foraging arena were 2 pairs of bowls. One bowl per pair contained cinnamon 

flavoured food while the other contained cocoa flavoured food. A video camera was mounted 

to the ceiling with the entire arena in frame and operated remotely using a tablet. Within the 

shelter, a GoPro camera was secured to record behaviour under the shelter not visible to the 

ceiling mounted camera. 
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2.2.3.6 Testing Bowls 

 
During training of the demonstrators, a flavoured food was made available to them for 1 

hour. The bowls used for training were the container portion of Rubbermaid® 7J55 Easy Find Lid 

square food storage containers (1/2 cup). The lid for the container was adhered to a 7cm x 7cm 

x 6cm (length, width, height) metal water dish so that the container portion could be snapped 

into and out of the secured lid for ease of weighing. The metal dish was then secured to a 9cm x 

9cm Plexiglas® base. Following the demonstrator observer interaction, the observer food 

preference was tested. In this case, two foods were presented simultaneously. Bowls used were 

two Rubbermaid®/metal water dish units adhered to a 15cm x 9cm sheet of Plexiglas®. The 

same type of bowl unit pairings used for the observer testing, were also used during social 

foraging as well as during equipalatibility testing. 

2.3 Procedure 

2.3.1 Personality Testing 

2.3.1.1 Light Dark Emergence into an Open Field (Figure 2.2A)  

 
  Rats were placed within the start box and left undisturbed to explore the arena for 30 

minutes. The movement of the rat over the course of the trial was recorded using a webcam 

mounted on the ceiling and tracked using custom software. Time spent out of the start box as a 

proportion of the total duration of the trial was extracted from the trajectories for each subject. 

Each rat had one trial per day for three consecutive days. On each day, the order in which the 

rats participated in the trials was counterbalanced. The arena and start box were sanitized using 

spray disinfectant and wiped dry after each subject had completed a trial.  
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2.3.1.2 Social Preference (Figure 2.2B)  

 
The subject was placed into the arena and allowed to explore undisturbed for 10 

minutes. The subject’s movement was recorded using a webcam mounted to the ceiling and 

later tracked. The proportion of time that the subject spent near the cage of the living 

conspecific was calculated as a proportion of the total amount of time spent near both cages. 

Time spent in the area between the two cages was ignored. To control for side preference 

effects, the position of the decoy and living rat were changed for each subject. The arena was 

sanitized using spray disinfectant and wiped dry after each subject had completed a trial.  

2.3.1.3 Elevated Plus Maze (Figure 2.2C)   

 
Rats were placed into the maze and left undisturbed for 10 minutes. The rat’s 

movement was recorded using a webcam mounted on the ceiling and later tracked. The 

amount of time that the individual spent on the open arms of the maze was calculated. The 

maze was sanitized after each subject had completed a trial.   

 

Figure 2.2: The three tasks used for personality assessment. A) Light/Dark Emergence into an open field; 

time spent exploring the arena was measured. B) Social Preference Test; the proportion of time spent 

near the conspecific was measured. C) Elevated Plus Maze; the proportion of time spent exploring the 

open arms was measured.  
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2.3.2 Selecting Foraging Pairs   

 
Following completion of personality testing, the 5 raw personality measures (proportion 

of total time spent on the open arms of the plus maze, proportion of total time spent near the 

conspecific during social preference, and the proportion of total time spent in the arena on 

each of the three days of light dark emergence), were reduced using principal components 

analysis (PCA), which resulted in a set of personality scores for each rat (see below). To 

maximize our chances of observing a behavioral difference between the two animals, foraging 

pairs were created by selecting rats with the greatest possible difference in personality scores.    

2.3.3 Social Transmission of Food Preference   

Rats were placed on food restriction for 24 hours before the start of the experiment. 

Observer rats remained on food restriction (20g per day) for the remainder of the experiment, 

with the exception of the personality testing phases. 

2.3.3.1 Testing for Equipalatibility 

 
Prior to starting the experiment, both foods were tested for ‘equipalatibility’ using rats 

that were not involved in the study. By presenting naïve rats with a pair of food bowls 

containing cocoa and cinnamon flavoured food, the foods are considered ‘equipalatable’ if the 

animals consume equal proportions of both (Galef & Whiskin, 1998). This ensures that one of 

the foods used during experimentation is not more desirable to the naïve animal and 

preferences acquired are indeed caused by STFP rather than an innate preference.   

To test equipalatibility, demonstrator rats were given 60g of cocoa flavoured powdered 

food (2% w/w), as well as 60g of cinnamon flavoured powdered food (1% w/w). Subjects were 
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left undisturbed to consume the food over a 4-hour period, after which the food was removed 

from the demonstrators’ cages and weighed. 

2.3.3.2 Training the Demonstrators  

 
The previously designated demonstrator rats underwent food preference training. 

During this time, rats were fed a diet of either cinnamon or cocoa flavoured food and left 

undisturbed for 1 hour. The food was then removed from the demonstrator’s cage and 

weighed. If the demonstrator had consumed at least 3g of the flavoured food, this was 

considered a sufficient amount to successfully transmit this information in the following STFP 

interaction. In the event that the demonstrator did not consume 3g of the flavoured food, an 

additional 30 min was given for the demonstrator to feed. If, after the additional time, the 

demonstrator did not consume the required amount of food, food restriction for this subject 

was re-assessed or, as a final option, a different demonstrator was used.   

2.3.3.3 Demonstrator/Observer Interaction  

 
Carried out in dim lighting, immediately following the training of the demonstrators, in a 

cage novel to both rats, a demonstrator was placed with an observer rat and allowed to 

interact undisturbed for 30 min. The preference of the demonstrator matched the 

predetermined desired preference to be given to the observer. Rats were then removed from 

the testing cages and returned to their individual home cages. Each demonstrator was only 

used for one interaction per day.  
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2.3.3.4 Observer Food Preference Test   

 
Immediately following the demonstrator/observer interactions, observers were given a 

4-hour preference test. As described above, rats were given 60 g of cocoa flavoured food as 

well as 60 g of cinnamon flavoured food. After 4 hours, the remaining food was weighed. If 

>50% of the total food consumed was that of the flavoured food also consumed by the 

demonstrator, then the transmission of food preference was said to have been successful.  If 

>50% of the total consumed was of the non-demonstrated flavour, the observer was given 

another demonstrator/observer interaction of the desired preferred food and re-tested until a 

preference was achieved.  

2.3.4 Social Foraging  

 
Once observer preferences had been established, subjects proceeded to the next phase 

of the experiment, social foraging. Rats of the same or differing food preferences (the order of 

trials was counterbalanced between groups) were placed in the foraging arena (Figure 2.3). 

Each pair of rats was allowed to explore the foraging arena for 30 min per day for five 

consecutive days. Between trials the arena was sanitized using spray disinfectant and wiped 

dry. Foraging sessions were recorded using a video camera mounted on the ceiling. Once the 

trials were completed, the videos were manually coded.   

Each rat underwent two phases of social foraging, each consisting of five consecutive 

days, as described above. Half the rats were first paired with a partner of the same food 

preference for the initial 5-day SF phase and then a partner of the opposite food preference for 

the second 5-day SF phase; the other half had a partner of the opposite food preference first. 

Each rat was paired with the same partner over the foraging phases, switching partners only 
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once between phase 1 and phase 2. In between these social foraging phases, rats’ preferences 

were re-tested and re-established, as described above. 

 
Figure 2.3: The pair foraging arena. A 183 x 183 cm foraging arena. Two bowl pairs 

contained one of each flavoured food (one cocoa and one cinnamon).  Behaviour 

was recorded using a video camera mounted to the ceiling and footage was later 

analyzed.   

2.3.5 Re-Assess Personality   

 
Identical to the procedure described in Personality Testing, rats underwent three days 

of experimentation to re-assess their personality at the end of the experiment. The first day 

consisted of one trial of light dark emergence into an open field (1 trial of 30 minutes). On the 

following day, their performance was once again tested on an elevated plus maze (1 trial of 10 

minutes), and finally, on the last day, social preference was again tested (1 trial of 10 minutes).   

 

 

Shelter 
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2.3.6 Data Analysis 

 
Social foraging videos were manually coded by recording the time (start and stop), type 

of food (cocoa or cinnamon), and bowl pair (A or B) for every feeding event of each rat.  

Personality testing videos were tracked using custom in-house software that extracted 

the position of the rat in every frame of the video. These trajectories were then analyzed in 

Mathematica (v. 9, Wolfram Research) to extract the following measures: duration of time 

spent on the open arms (elevated plus maze), proportion of time spent near the live conspecific 

(social preference test), and total time spent outside the start box (3 light/dark emergence 

tests). Individual scores on all these measures were entered into a PCA.  

2.4 Results 

 
Following demonstrator/observer interactions, occasionally the observer would not 

exhibit a preference (~20%). In this case, the observer underwent the same 

demonstrator/observer interaction the following day until a preference was established, usually 

following the second or third interaction. Further analysis of the data could determine if there is 

a correlation between failure to establish a food preference and the personality of the observer 

or demonstrator. Additionally, as mentioned in the methods section of this chapter, if after 

additional feeding time was given, the demonstrator did not consume the required amount of 

food, as a final option, a different demonstrator was used. This only happened once throughout 

the course of the experiment.  

 

 



www.manaraa.com

NEURAL AND SOCIAL MECHANISMS BEHIND STFP      42  

2.4.1 Personality 

 
The PCA results of the personality measures indicated that the first two components 

were significant. The eigenvalues of the correlation matrix were: 3.2, 0.94, 0.46, 0.21, and 0.18, 

explaining 64.2%, 18.8%, 9.2%, 4.1%, and 3.7% of the variance, respectively. It is generally 

accepted that eigenvalues above (or near) 1 are significant. Table 2.1 gives the loadings of the 

first two factors onto the raw measures. The loadings show a correlation between the 

proportion of time spent on the open arms of the plus maze (Topen ) and the proportion of time 

spent out in the arena over each session of light dark emergence (Tout1, Tout2, Tout3). All four of 

these measures load most heavily on Factor (F1). Since each of these measures could be 

interpreted as a reflection of risk-taking behaviour and all load most heavily on F1, the 

correlation between them suggests that F1 may reflect ‘boldness’. Time spent near the 

conspecific is not correlated with any of the other 4 measures and loads most heavily on Factor 

2 (F2). Given that social preference is used to assess sociability, this suggests that F2 reflects 

‘sociability’.   

In the context of my thesis, personality testing measures commonly used to measure 

anxiety-like behaviours (Elevated-Plus and Light Dark Emergence) were considered to be 

measures of “shyness”. Therefore instead of my results being discussed as high-anxiety versus 

low-anxiety, behaviour was considered to be a marker of boldness versus shyness.  
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 Test Measure Factor 1  Factor 2 

Elevated Plus TOpen 0.8049 -0.1054 

Social Preference TCon 0.3126 0.9484 

Light Dark Emerg. (1) Tout1 0.9178 -0.1514 

Light Dark Emerg. (2) Tout2 0.8932 -0.0590 

Light Dark Emerg. (3) Tout3 0.9088 -0.0219 
 

Table 2.1. Loadings of personality measures onto principal components Factor 1 (Boldness) and Factor 2 

(Sociability). Measures shown include the proportion of time spent on the open arms of the Elevated 

Plus Maze, Topen, the proportion of total time that the subject spends in the vicinity of the conspecific 

during the Social Preference Test, TCon, as well as the amount of time spent out of the start box in all 

three Light Dark Emergence trials TOut. 

To assess the accuracy of our personality tests, as well as to see if personality had 

changed over the course of social foraging, correlations for personality testing both pre and 

post social foraging (SF) were completed (Figure 2.4). Since the post-social foraging personality 

testing consisted of only one light dark emergence session (instead of the 3 pre-SF sessions), 

the PCA used to assess pre-SF personality tests could not be applied. To correlate performance 

in the personality testing battery before and after social foraging, raw scores were instead 

used. Scores were strongly correlated for time spent out of the shelter on the light-dark test (r = 

0.72, t41 = 6.66, p < 0.0001) as well as time on the open arms of the elevated plus maze (r= 0.67, 

t41 = 5.71, p < 0.0001). However, social preference scores pre- and post-SF were not correlated 

(r= 0.13, t41 = 0.83, p = 0.21).  

Due an inconsistency in the number of testing measures pre- and post-SF (three LD trials 

pre-SF versus one LD trial post-SF), when analysing the effect of personality, my results utilize 

only pre-SF personality scores for boldness and sociability. 
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Figure 2.4: Correlation of pre- and post-social foraging (SF) scores for each personality test. Light-Dark 

(A) and Plus Maze (B) scores are positively correlated pre- and post-SF. However, Social Preference 

scores (C) are not correlated. Each blue dot represents one rat. The red line in each panel indicates the 

best-fit linear regression to the data; the grey line shows the diagonal. 

2.4.2 STFP 

Food preference tests were given four times over the course of the experiment (before 

SF1, after SF1, before SF2, and after SF2). This was done in order to test preference transmission 

(post demonstrator/observer interaction) as well as preference maintenance (post foraging). 

Means and standard deviations (SD) for each of the four preference tests are given in the table 

below (Table 2.2), showing that preferences were successfully established following each 

demonstrator/observer interaction. Means and SDs are also given for cocoa and cinnamon 

separately, showing that the flavours are equipalatable and one does not create a stronger 

preference than the other. Using a series of Two-Sample Kolmogorov–Smirnov (KS) tests, 

preference strength between cocoa and cinnamon rats was compared for all four preference 

tests; no effect was found (all D < 0.32, all p > 0.21). 
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 Before SF1 After SF1 Before SF2 After SF2 

 Mean SD Mean SD Mean SD Mean SD 

Cocoa 75.03 17.14 62.47 26.39 75.49 17.42 60.52 24.11 
Cinnamon 78.25 12.04 52.47 21.80 69.17 15.54 51.03 19.40 

Overall 76.64 14.70 57.47 24.41 72.33 16.60 55.78 22.12 
 
Table 2.2: Means and standard deviations for the proportion of preferred food consumed by the 

observer following food preference tests. Tests were given four times throughout the experiment, 

before SF1, after SF1, before SF2, after SF2. Results are given according to the food flavour demonstrated 

to the observer during the demonstrator/observer interaction as well as the overall results following 

each test.  

 

To answer our first question, whether personality can affect the strength of an 

individual’s food preference, I compared consumption of the demonstrated food flavour 

following the initial demonstrator/observer interaction to an individual’s boldness (Figure 2.5A) 

and sociability (Figure 2.5B), as determined pre-SF. The correlations between boldness and 

preferred food consumption (r = 0.20, t41 = 1.33, p = 0.10) and between sociability and 

preferred food consumption (r =-0.12, t41= -0.80, p = 0.21) were both not significant. 

           
 
Figure 2.5: Strength of STFP is not predicted by personality. There is no correlation between percentage 

of preferred food consumed and boldness (A) or sociability (B).  
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            Figure 2.6 shows the consumption of the demonstrated food both before and after SF. 

The blue and green lines show the percentage consumption of the demonstrated food 

following the demonstration interaction or classic STFP protocol (blue shows preference before 

any social foraging; green shows preference after re-acquisition, following the first set of social 

foraging trials). In both cases, there is a high percentage consumption of the preferred food 

(see Table 2.2). The red and orange lines show percentage consumption of demonstrated food 

following social foraging (yellow after the first set of trials; red after the second). In both cases, 

food preferences have been largely degraded. 

Since the first SF partner pairing preference (same or different) was counterbalanced, I 

was able to assess whether a same- or different-preference partner had a different effect on 

the subject’s post-SF1 STFP test. Results from a KS test show that there is no difference (D = 

0.19, p=0.75). In other words, preference for a demonstrated odour decreases after social 

foraging, but this decrease does not depend on whether the foraging partner has the same or a 

different food preference. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.6: Consumption of demonstrated food by observer rats following initial STFP (blue), first SF 

phase (yellow), re-acquisition of STFP (green), and second SF phase (red). Following demonstrations, 
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consumption of the demonstrated food was above chance (Pre-SF and Reacquire). However, following 

both phases of SF, preferences were largely degraded (Post-SF1, Post-SF2).   

2.4.3 Social Foraging  

 
I looked next at rat pairs’ behaviour within the foraging arena. During SF trials, rats were 

placed into pairs within a foraging arena where they explored freely for 30 minutes. Each rat 

received two five day blocks of SF sessions, SF1 and SF2. During each SF block, rats were paired 

with a partner of the same of differing food preference for SF1 (counterbalanced) and then a 

different partner of same or differing preference for SF2. Two pairs of bowls containing cocoa 

and cinnamon flavoured food were placed in the arena and feeding behaviour was recorded. 

Data collected from SF was complex as several factors can be examined: rat personalities, 

preference types and strengths, differences between partners, bowl pairs at which a subject is 

feeding, and food type consumed. As well, there are 5 days of data for each SF session. In order 

to address these factors, the data analysis has been broken down into a series of small 

questions.  

 Behaviour over each 5-day SF session was averaged. Figure 2.7 shows whether or not 

the average amount of time spent eating while foraging can be predicted by individual 

personality (as determined pre-SF). The left panel indicates that with increasing boldness, 

individuals spend less time eating (r = -0.58, t41 = -4.57, p < 0.0001). This could be because they 

are spending more time in exploration compared to shy individuals. Further analysis using 

tracking software will reveal if the animals are spending their time in exploration or under the 

shelter. The right panel indicates that sociability does not have an effect on the mean time the 

animal spends eating (r = -0.30, t41 = -2.06, p = 0.02).  
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 In addition to the individual personalities and their potential effect on behaviour in the 

foraging arena, I also looked at the mean time spent eating as a function of the difference in 

pre-SF personality between members of the pair (difference in boldness, for example, has been 

shown to be important in exploration of a novel environment by pairs of zebrafish; Guayasamin 

et al., 2017). The difference in personality is calculated as the distance between a pair of rats 

when plotted on a graph with Factor 1 as the x-axis and Factor 2 as the y-axis, as depicted in 

Figure 2.8. The results, for both same-preference and different-preference pairs, were not 

significant (rsame = 0.08, t41= 0.53, p = 0.30; rdifferent = 0.13, t41= 0.86, p = 0.20). From this I can 

conclude that differences in personality between individuals within a pair are not predictive of 

their behaviour during social foraging.  

 
Figure 2.7: During social foraging, the amount of food eaten depends on boldness (A) but not sociability 

(B). Bolder rats eat less than less bold rats.  

 

Boldness (F1)  

M
ea

n
 t

im
e 

ea
ti

n
g 

(s
ec

) 

Sociability (F2) 

B A 



www.manaraa.com

NEURAL AND SOCIAL MECHANISMS BEHIND STFP      49  

 
Figure 2.8: Calculating differences in personality. The personality scores for Factor 1 and Factor 2 were 

plotted for each rat. The distance between two rats was considered to be the difference in personality 

(Δpersonality) between subjects. The data shown are for illustration of the method only. 

 

  I also examined how much of an individual’s preferred food was consumed as a 

proportion of their total food consumption during SF. The proportion of preferred food 

consumed (PPF) was assessed as a function of pre-SF personality, same or different preference 

partner, as well as the pair’s Δpersonality score. Whether a partner had the same or different 

preference had no effect on PPF (KS-test, D = 0.09, p = 0.37). Additionally, the total amount 

eaten by the pair during SF was unaffected by the preference of the partner (KS-test, D = 0.36, p 

= 0.11). Next, I examined if a pair’s Δpersonality score had an effect on PPF; it did not (rsame = -

0.20, t41 = -1.29, p = 0.10; rdifferent = 0.13, t41= 0.86, p = 0.20). In summary, PPF does not appear 

to be a function of personality, same or different preference partner, or the pair’s Δpersonality 

score.  

 Based on the findings shown in Table 2.2, preferred food consumed during an STFP test 

declines following SF sessions. To explain this, I examined if having a same- or different-

preference partner during SF had an effect on preference test performance. To do so, a KS-test 
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(difference between pre-SF scores and post-SF scores). No significant findings were found (D = 

0.16, p = 0.64). Finally, I asked if Δpreference could be explained by PPF consumed during SF. 

Results were calculated based on the presence of same- or different-preference partners and, 

once again, results were not significant (rsame = 0.07, t41 = 0.43, p = 0.33; rdifferent = -0.01, t41 = -

0.10, p = 0.46). From this I can conclude that Δpreference is unaffected by the preference of a 

partner during SF and is also unaffected by PPF consumed during SF.  

2.4.4 Overlap  

 
        Next, I looked at the timing of feeding events to examine the potential for coordination 

during social foraging. I observed a large amount of overlap between pairs during individual 

feeding events. I defined ‘overlap’ as the proportion of the time of one rat’s feeding during 

which the other rat was also feeding, regardless of which bowl pair either rat was at. The 

overlap score for each individual rat was calculated for every foraging trial and then averaged, 

giving each individual a single overlap score. For example, if an individuals’ overlap score is 1, 

then they always engage in feeding at the same time as their partner. Conversely, if an 

individuals’ overlap score is 0 then they never engage in feeding at the same time as their 

partner. 

        In Figure 2.9, the distribution of mean feeding overlap per rat is shown in blue. This 

distribution appears to be bimodal. To test whether it is or not, I used a maximum likelihood 

estimation procedure that compared the goodness-of-fit (using the Akaike Information Criterion, 

AIC) of Gaussian mixture models with 1, 2, or 3 modes to the data distribution (Everitt, 1981). 

The AIC values were: -37.096, -37.901, and -32.455, respectively, suggesting that the distribution 

is most likely bimodal (the model with the lowest AIC score is preferred).  
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Figure 2.9: The distribution of mean overlap per rat (blue). The distribution is bimodal: the best-fit single 

Gaussian model (in red) fits less well than a 2-Gaussian model (green; see text for details). The inset 

shows the two modes of the best-fit bimodal model and the criterion for assigning rats to a mode (overlap 

= 0.39). 

  I next divided my subjects by which mode of the overlap distribution they inhabited (I 

used the intersection of the two components, at overlap = 0.387, to assign individuals to a 

mode) to see how these populations may differ. Ten of my 41 experimental subjects fell into 

the high-overlap mode. The pre-SF boldness and sociability scores of rats in the high-overlap 

mode (green in Figure 2.10) were compared to those of animals in the low-overlap mode (blue 

in Figure 2.10). Rats with higher overlap scores tended to have lower boldness scores (KS-test, 

D = 0.91, p = 2.3 X 10-7). There was no significant correlation of sociability with overlap mode (D 

= 0.25, p = 0.62).  
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Figure 2.10:  Overlap mode is predicted by boldness (A) but not by sociability (B). Rats in the low-

overlap mode tend to have higher boldness scores than rats in the high-overlap mode, i.e., bolder rats 

overlap less in their feeding. Sociability scores do not correlate significantly with overlap mode. 

 

        The same effect can be shown by correlating the individual overlap scores for each rat with 

their personality scores (Figure 2.11). As the boldness score for an individual decreases, the 

mean overlap in feeding events increases significantly (r= -0.64, t41 = -5.35 p < 0.0001). 

Sociability is not significantly correlated (r= -0.32, t41 = -2.19, p = 0.02). In other words, the 

bolder a rat, the less likely it is to feed at the same time as its partner. 

 
 

Figure 2.11: Overlap scores. Boldness (A) but not sociability (B) correlates negatively with feeding 

overlap. Like Figure 2.10, this shows that bolder rats overlap less in their feeding. Each blue dot 

represents one rat; the red line represents the best-fit linear regression to the data. 
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Overlap scores were then calculated for each SF session separately, so that each rat 

received two scores: one for the same-preference SF trials and one for different. In Figure 

2.12A, the distributions of the mean feeding overlap during both social foraging phases are 

shown. Overlap distributions for both same and different preference sessions were similar, 

indicating that overlap was equally likely in both foraging phases (KS-test, D = 0.27, p = 0.08), 

though there was a trend for overlap to be lower when foraging partners had different food 

preferences. 

Showing the same effect in another way, Figure 2.12B demonstrates that the overlap 

scores for both foraging phases for the same rat are correlated (r = 0.40, t41 = 2.82, p = 0.004). 

This indicates that the timing of a subject’s foraging behaviours is mostly determined by the 

personality of the individual, not the personality or food preference of their partner. 

 
 

Figure 2.12: Overlap is consistent across same and different SF sessions. A. Distributions of mean 

overlap during same-preference (blue) and different-preference (red) SF sessions. B. Individual overlap 

is significantly correlated across same- and different-preference SF sessions. Each blue dot indicates one 

rat; the red line is the best-fit linear regression to the data. 
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2.5 Discussion 

 

Using a combination of STFP, personality assessment, and social foraging, this 

experiment examined how personality may affect STFP both transmitted during classic 

observer/demonstrator interactions and within a naturalistic setting. Our results show that the 

strength of food preference, defined as the proportion of the preferred food that was 

consumed, is not correlated with either boldness or sociability. Based on our personality 

testing battery, the ability to acquire a preference for a certain food following a social 

interaction appears to be driven by mechanisms that could be independent of the calculated 

personality scores of the observer.  

 To test whether the personality of one individual with a certain odour preference could 

alter the preference of a conspecific, animals were placed in pairs into a foraging arena and 

food choices were recorded during foraging trials. Additionally, each individual was given a 

preference test following the final foraging session to see if their preference had changed 

compared to pre-foraging results. Overall, food preferences largely disappeared following 

social foraging. I found that food choices during foraging trials, as well as food preference 

results following foraging, were not affected by the personality or preference of the foraging 

partner. However, independent of food preference, individuals assessed as being bolder spent 

less time eating. Although further video analysis would need to be completed to confirm this 

explanation, it is likely that the bolder individuals are spending more time in exploration and 

less time eating. In our personality tests, bolder individuals spent more time outside of the 

start box in the light dark emergence test, which indicates that they were spending more time 

exploring the open field. The same could also be true during the foraging trials. In addition to 
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this, Kurvers et al. (2010) provided evidence that bolder individuals explore a novel 

environment more readily, which supports our findings.  

 During this experiment, animals that were shyer tended to spend more time eating at 

the same time as their partner, which I called overlap. Higher overlap in shy individuals could 

occur because shy individuals tend to rely on social foraging information, in this case, the 

decision to engage in an eating event, more than personal information (Kurvers et al., 2010). 

Additionally, a number of studies have shown that shy individuals largely copy the decisions of 

bolder individuals (Harcourt et al., 2009; Kurvers et al., 2009; Nakayama et al., 2012). The 

likelihood for shy individuals to copy decisions of bold is interesting in the context of my thesis 

because it seems as though food choices were not copied in terms of type of food, but rather 

in terms of the decision to engage in eating more generally.  

A possible hypothesis potentially independent of personality is that satiety of the 

preferred food stimulus may be occurring (Berridge, 1991) or perhaps progressively larger 

samplings of the non-preferred novel food both during SF and the choice test, leads to post-SF 

choice test results comparable to those of equipalatibility. This hypothesis could be tested by 

presenting an observer with the choice test and weighing both foods at various time intervals 

to determine at which point equal portions of the foods are being consumed. When taking into 

account that the degradation of preference occurs following social foraging, perhaps there is 

an interaction between personal versus social information. Upon the first day of SF, each rat is 

entering the arena with a preference (personal information). During social foraging, as pairs 

are interacting, additional and potentially conflicting social information is being made present 

possibly leading to the degraded preference evident following choice tests. Social information 

is once again successfully transmitted as a preference is re-establishes pre-SF2. Following 
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completion of my experiment, when and if social information becomes more important than 

personal information remains unclear. Examination of this could be done by tracking non-

preferenced feeding of a partner and seeing when sampling of that food is exhibited by a 

specific rat. Additionally, rats could undergo social foraging individually to see if/when 

sampling of the non-preferred food occurs.  

 Personality was tested both at the beginning of the experiment and again at the end. 

For the elevated plus maze, scores pre and post experiment were correlated. This finding is 

unusual when compared to the phenomenon of “one trial tolerance” normally exhibited during 

plus maze trials (File et al., 1990). According to File et al. (1990), after exposure to the elevated 

plus maze, re-exposure showed a marked decrease in anxiety related behaviour as the rats 

explored the open arms as frequently as an anxiolytic treated animal. However, one trial 

tolerance effects associated with the elevated plus maze have been shown to last only up to 14 

days between exposures (Rodgers & Shepherd, 1992; File et al. 1990). Since personality testing 

on the plus maze was conducted on day 4 and day 19 of the experiment, the 15 day waiting 

period may have been sufficient to negate the effects of the one trial tolerance phenomenon.  

 Correlation of pre and post personality scores showed no correlation between the social 

preference tests, indicating that rats spent less time around the conspecific during the final 

assessment. This could be explained by habituation to the social stimulus. In a study by Niesink 

& Van Ree (1982), rats that were housed in isolation showed an increase in social interactions, 

increasing to its maximum after 4-7 day of isolation. One week following arrival in our facility, 

rats used in the current thesis were placed into isolation and then handled for 10 days. Once 

the experiment began, rats continued to be tested in isolation until the 5th day of 

experimentation when they were tested for social preference. Applying the findings of Niesink 
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& Van Ree (1982), this would be well into the period of isolation that elicits maximal 

interactions between conspecifics. Following the completion of social foraging, rats received 

their second social preference test 3 days after the final pair foraging trial. Based on Niesink & 

Van Ree (1982), an increase in interaction frequency is not demonstrated until day 4 thus 

potentially explaining lack of correlation that I found between pre and post social preference 

scores. Since performance on the social preference test seems to differ depending on the 

length of time between testing sessions, perhaps this is not a good measure of personality. As 

described previously, personality is defined as remaining unchanged over time, this suggests 

that alternatives to the social preference test used in my thesis should be considered.  

Future directions and manipulations to this experiment could look at implementing 

automated lids on the food bowls present in the foraging arena. Lids could be controlled by a 

computer running automated tracking software (Pérez-Escudero et al., 2014; Miller & Gerlai, 

2012) to open and close upon approach of a certain rat. This could allow us to artificially create 

a leader, allowing one food source to only be made available to one rat, in which case the other 

rat in the pair would need to follow this rat to have access to the desired food.  

The experiment could also be conducted using social foraging groups of larger sizes. 

During pilot studies for our experiment, groups of three rats in an open field foraging setting 

consistently exhibited the same roles within a group: one rat would lead in exploration and 

bring food back to the home base (in these pilot studies, the provided food was whole Froot 

Loops®, rather than powdered food as used in the final experiment, which tends to be eaten at 

the bowl), one would follow, and one would remain in the home base. Rats shared the food 

that was deposited in the shelter.  
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Another interesting phenomenon to investigate would be the variance in preference 

strength amongst individuals. Perhaps some rats consume a greater proportion of the 

demonstrated food because they have a lower latency to begin eating from the food bowl. 

Although the scent of the food has been introduced via a demonstrator, when the food is 

presented during the choice test, it is novel to the observer in terms of direct experience with 

the stimulus. This could be assessed by recording how long it takes each individual to start 

feeding. As well, preferred food consumption may be predicted by implementing additional 

personality testing such as a novel object exploration task. Subjects that have a lower latency of 

exploration of the object or even spend a higher proportion of time investigating the object, 

may be less hesitant to consume the demonstrated food. 

2.6 Conclusions  

 
Using a combination of individual personality and STFP within a novel environment, this 

chapter has provided a greater understanding into how transmission of social information takes 

place in a more naturalistic setting. Our results suggest that personality does not affect the 

strength of an individual’s food preference. As well, conflicting information from a partnering 

conspecific does not seem to alter an individual’s initial food preference during foraging trials. 

However, following social foraging individual preferences are largely degraded. Bold individuals 

tend to spend less time eating and have a lower overlap score when compared to shy 

individuals. These findings provide evidence that personality, food preference, and social 

foraging all interact in very complex ways.   
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Chapter 3: Modulation of Arc expression in the olfactory bulb by social preference 

3.1 Introduction 

 
While a great deal of behavioral work has been done using the STFP paradigm, relatively 

few experiments have investigated the neurobiological substrate that supports this form of 

social learning within the main olfactory bulb of adult rats. Although several studies have been 

conducted, work to date has focused on demonstrating the involvement of the hippocampal 

formation and surrounding medial temporal lobe structures in mediating STFP (Bunsey & 

Eichenbaum, 1995; Alvarez et al., 2001; Clark et al., 2002; Countryman et al., 2005; Ross & 

Eichenbaum, 2006; but see Burton et al., 2000). It remains unknown if the integration of social 

information and the identity of the odour to be preferred may be integrated “upstream” of the 

hippocampus.  As reviewed in section 1.4.3, extrapolating what is known about the 

development of odour preferences in other paradigms can provide a rationale to hypothesize 

that integrative information processing required to support STFP may occur within the olfaction 

system, prior to information being transmitted to the hippocampus. Although any number of 

locations within the olfaction system could potentially have the network properties necessary 

to support STFP, the current thesis looked for changes in the information processing of M/T 

cells of the MOB, as this is the first set of synapses to process incoming odour information. By 

doing so, I was able to investigate how socially-learned preferences may alter the 

representation of odours in this brain region.   

The MOB is a plausible locus for the integration of odour and social information because 

responses in this region change reliably in a different paradigm for socially transmitted 

preferences – the pairing of an odour with tactile stimulation. When paired with tactile 
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stimulation, a preferred odour comes to be represented by a larger ensemble of M/T cells that 

are more reliably recruited upon re-exposure to that preferred odour (Sullivan et al., 2000; 

Yuan et al., 2003; Shakhawat et al., 2014). When an odour is detected, a distinct population of 

M/T cells will be activated (Malnic et al., 1999). Upon re-exposure to the odour, the same 

population will be activated, however there will be some variance in the population 

(Vazdarjanova & Guzowski, 2004). The proportion of cells being activated during both 

presentations of the odour is called the similarity score (Vazdarjanova & Guzowski, 2004). A 

similarity score of 1 indicates complete overlap of the activated cellular population where a 

similarity score of 0 indicates that the activation overlap of the cellular populations is no more 

than one would expect due to random chance (Vazdarjanova & Guzowski, 2004). As shown by 

Yuan and Harley (2014), if an odour is preferred two exposures to that odour will have a higher 

similarity score than if a non-preferred odour is presented twice. It is reasonable to hypothesize 

that STFP may cause the same changes in the representation of odours in M/T cells of the MOB.  

This hypothesis can be tested by examining the expression of an activity-dependent 

cytoskeletal protein (Arc, also known as Arg3.1). By capitalizing on the unique properties of 

immediate-early genes such as Arc (Guzowski et al., 1999) through the use of compartmental 

analysis of temporal activity by fluorescence in situ hybridization (catFISH), it is possible to 

generate a histological record of the activity pattern of neurons during two distinct behavioural 

epochs (Figure 3.1). Generating such a histological record is possible because of the tight 

coupling that occurs between neuronal activity and Arc transcription. Following neuronal 

activity sufficient to induce synaptic plasticity, Arc is transcribed nearly immediately. If tissue is 

collected, these gene products (Arc mRNA) can be visualized in the nucleus of the cell within 30 

seconds of activity and remain detectable at distinct transcriptional intra-nuclear foci (INF) for 
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approximately 5 minutes.  As Arc production continues, Arc m-RNA transcripts migrate from 

within the nucleus to the surrounding cytoplasm, where they are detectable by in situ 

hybridization for a period of approximately 10 minutes, peaking 30 minutes after neuronal 

activity.  Because the expression of Arc within these two compartments (i.e., within and outside 

of the nucleus) can be linked to discrete time frames, a report of the activity history of a large 

section of neuropil can then be generated.  

Although catFISH has been used primarily to detect hippocampal activity, this technique 

has been successfully used in several brain regions (reviewed in Guzowski et al., 2001; 2005) 

including M/T cells of the MOB (Shakhawat et al., 2014). Generating comparable data by 

examining M/T cells of the MOB following exposure to a preferred odour established by means 

of  the STFP paradigm will provide valuable insight into the neural mechanisms underlying this 

form of social learning. I hypothesized that upon exposure to an odour, a greater proportion of 

M/T cells would express Arc and the M/T cellular population would be more reliably activated 

(higher similarity score) following re-exposure to the odour if an odour preference has been 

pre-established using STFP. When comparing a preference transmitted via live demonstration 

to a preference transmitted via surrogate, I hypothesized that results would be comparable to 

those found in rat pups (Sullivan et al., 2000; Yuan et al., 2003; Shakhawat et al., 2014). As well, 

since the demonstrator and observer would be physically interacting, NE dependant 

mechanisms may also be driving this neuronal change.  
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Figure 3.1: Imaging neural activity with temporal and cellular resolution using IEG catFISH. On the left, 

(A) a projection image generated from a confocal image stack from a rat hippocampus shows a cell 

containing Arc mRNA both within INF (white arrows) and the surrounding cytoplasm (yellow arrow). 

Nuclei were counterstained with DAPI (blue) and Arc RNA was detected with cyanine 3 (red). On the 

right, (B) a behavioural timeline for a typical catFISH imaging experiment is shown. In addition, the 

approximate time course for the detection of Arc in INF (solid line) as well as the cytoplasm (dotted line) 

following neuronal activation in a two experience Arc catFISH experiment is also depicted (below). The 

behavioural epochs for which Arc in INF or cytoplasm provide ‘readout’ are shown above the curves. 

Adapted from Guzowski et al., 2001. 

3.2 General Overview of Procedure 

 
To test how STFP may alter the activity of MOB M/T cells, adult male Sprague Dawley 

rats were exposed to two novel odours (cocoa and cinnamon) and a preference for one of the 

odours (counterbalanced) was induced using a standard STFP protocol (Figure 3.2). This 

procedure produced a preferred (P) odour, while the novel odour to which they were not 

exposed during the demonstrator/observer interaction was considered to be the non-preferred 

(NP) odour. The following day, groups of rats (n = 6/group) were exposed to either the 
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preferred odour twice (P/P), the non-preferred odour twice (NP/NP), or both odours (P/NP), 

with each exposure spaced 30 minutes apart. Size and pattern of the ensemble activated by 

each odour could then be determined by examining compartmental expressions of Arc. If, as 

hypothesized, STFP causes the preferred odour to induce a larger and more specific pattern of 

mitral cell activity, this would suggest that the large body of data on the mechanisms of 

preference development through tactile stimulation may also apply to the STFP paradigm.  

3.3 Methods  

3.3.1 Subjects 

 
For this experiment, I used 32 male Sprague-Dawley rats (Charles River, St. Constant, Quebec), 

purchased at approximately 50-52 days old and 201-225 g. Subjects were pair housed upon 

arrival and a week later were transferred to individual housing units.   

The procedures used followed the Canadian Council on Animal Care guidelines and were 

approved by the Wilfrid Laurier University Animal Care Committee. 

 

           
 
Figure 3.2: Experimental timeline for each subject. Observer rats were given a preference by 

demonstrator/observer interaction following STFP protocol. 24 hours later, observers were exposed to 

one of two food flavours, cocoa or cinnamon (Expo. 1), given a 20 minute ITI, and exposed to another 

flavour (Expo.2). Immediately following the second exposure, rats were sacrificed and olfactory bulbs 

were removed and flash frozen.  
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3.3.2 Test for Equipalatibility in Naïve Rats  

 
Prior to starting the experiment, both foods were tested for ‘equipalatibility’ using rats 

that were not involved in the study. By presenting naïve rats with a pair of food bowls 

containing cocoa and cinnamon flavoured food, ‘equipalatibility’ is said to be present if the 

animals consume equal portions of both foods (Galef & Whiskin, 1998). This ensures that one of 

the foods used during experimentation is not more desirable to the naïve animal and 

preferences acquired are indeed caused by STFP rather than an innate preference.  

To test equipalatibility, demonstrator rats were given 60 g of cocoa flavoured powdered 

food (2% w/w), as well as 60 g of cinnamon flavoured powdered food (1% w/w). Subjects were 

left undisturbed to consume the food over a 4-hour period, after which, the food was removed 

from the demonstrators’ cages and weighed. If the mean percent intake by the demonstrators 

was roughly 50% for each of the food flavours (in the range of 43% to 57%), the social 

interaction portion of the experiment could then take place (Galef & Whiskin, 1998). Previous 

literature has demonstrated the following food pairings to be equipalatable: 2% (w/w) ground 

marjoram and 1% (w/w) ground anise, 0.4% (w/w) ground cloves and 0.5% ( (w/w) ground 

cumin, and finally, 0.5% (w/w) ground rosemary and 0.5% (w/w) ground cardamom (Galef et 

aI., 1984). 

3.3.3 Training the Demonstrators 

 
Demonstrator rats were fed a diet of either cinnamon or cocoa flavoured food and left 

undisturbed for 1 hour. Food was then removed and weighed. If the demonstrator had 

consumed at least 3 g of the flavoured food, then they had consumed a sufficient amount to 

successfully transmit this information in the following STFP interaction (Galef et al., 1984). In 
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the event that the demonstrator did not consume 3 g of the flavoured food, an additional half 

an hour was given for the demonstrator to feed. If after the additional time, the demonstrator 

did not consume the required amount of food, food restriction for this subject was re-assessed 

or a different demonstrator was used.  

3.3.4 Demonstrator-Observer Interaction 

 
Observer rats were exposed to a demonstrator using one of three social paradigms 

(Figure 3.3). Some rats received “live demonstration with preference”, where the 

demonstrator/observer interaction was with a demonstrator rat that had been feed a specific 

diet of either powdered cocoa or cinnamon flavoured food. A second paradigm was also 

implemented, “live demonstration no preference”, involving a demonstrator rat that had been 

fed unflavoured powdered food. The third and final paradigm, “surrogate demonstration with 

preference” consisted of interaction with a cotton ball surrogate that had been rolled in either 

cocoa or cinnamon flavoured food and dampened with diluted carbon disulfide (1:1000 

ppm)(VWR).  

Immediately following training of the demonstrator, one of the three social paradigms 

described above was implemented. In a cage novel to both the demonstrator (or surrogate) and 

the observer, a demonstrator (or surrogate) was placed with an observer rat and allowed to 

interact undisturbed for 30 minutes (Figure 3.2).  Over the course of the interaction, behaviours 

were filmed using a video camera. After the allotted 30-minute interaction, rats were taken out 

of the testing cages and placed back into their individual home cages. Demonstrators were only 

used for one interaction per day.  
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There were 24 observers in total for the experiment, 12 of which were given a live 

demonstration of cocoa or cinnamon (Group A and B). An additional group of 6 was given a live 

demonstration during which the demonstrator was feed an unflavoured powdered food (Group 

C). The final group of 6 was given surrogate demonstrations (Group D). Following 

demonstrations, the food flavouring consumed by the demonstrator was then referred to as 

the preferred flavouring of the observer.  

 

 
 

Figure 3.3: Social interaction paradigm. Observer rats (right animal in the pair) were placed in a cage 

with a demonstrator conspecific (left) and left undisturbed to interact with one another for 30 minutes. 

Immediately prior to the interaction, demonstrators were fed a flavoured (black dot), or unflavoured 

food (no dot) for 1 hour or until 3 grams had been consumed. 24 hours later, observer rats were 

exposed to two flavours of food (one having been demonstrated and the other being novel), as 

described in Figure 3.2. 

3.3.5 Observer Testing  

 
Twenty four hours after the social interaction had occurred, rats underwent two five 

minute exposures to the flavoured food (Figure 3.4). Groups (n = 6/group) were exposed to 

either the preferred (P) odour twice (P/P) (Exposure Condition 1), the non-preferred (NP) odour 

twice (NP/NP) (Exposure Condition 2), or both odours (P/NP) (Exposure Condition 3) during the 

course of the testing phase (Table 3.1). 
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For the first exposure, while in their individual housing units, a food cup containing 60 g 

of either the cocoa or cinnamon flavoured food was placed in the home cage. Once 5 minutes 

had passed, the food was removed and weighed to record the amount consumed over the 

testing duration. A 20 minute inter-trial interval during which subjects remained undisturbed in 

their home cages followed exposure one. The second exposure occurred by placing a food cup 

containing 60 g of either the same or different food flavouring that was introduced during 

exposure one.  

Immediately following completion of the 5 minute exposure to the second food, the 

subjects were sacrificed, and OBs were extracted and flash frozen for analysis of Arc expression 

using catFISH by established protocols (Shakhawat et al., 2014, Vazdarjanova and Guzowski, 

2004). 

An additional group (n=4) of caged controls rats were sacrificed immediately out of their 

homecages. They did not undergo any of the demonstration types nor were they exposed to 

any odours during observer testing.  

                                                          
 
Figure 3.4:  Preference testing. 24 hours after social interactions, observer rats could be divided into 2 

groups; those with a preference (dots) and those that did not. These groups of rats were exposed to 

either the preferred flavour (dots) or a non-preferred flavour (stripes) for 5 minutes (Exposure 1). After a 
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20 minute delay, these rats were wither exposed to the same flavour again or the opposite flavour from 

their first exposure (Exposure 2).  

 
Group  Demo. Type Demo. Pref. Exposure 11 Exposure 2 

A Live Yes C(N) N(C) 
B Live Yes C(N) C(N) 
C Live No C(N) N(C) 
D Surrogate Yes C(N) N(C) 

Table 3.1: Description of the different observer groups. 1 C = cocoa, N = cinnamon 

3.3.6 Histology 

 
Immediately following the final 5 minute exposure, animals were anesthetized by 

isoflurane inhalation. Animals were decapitated and brains were extracted in under 3 minutes 

to maintain mRNA integrity. If a brain was not extracted within the 3 minute window, the tissue 

was discarded. Following extraction, brains were quick-frozen in a beaker of isopentane bathed 

in a dry ice/ethanol slurry. Brains were stored at -80°C until sectioning. Prior to sectioning, 

brains were mounted together with OCT compound (Fisher Scientific, Whitby, ON). Sectioning 

was completed in a -20°C cryostat slicing coronally at 20 μm. Sections were thaw-mounted onto 

Superfrost Plus slides (Fisher), dried, and stored at -80°C until processing via catFISH 

(Shakhawat et al., 2014, Vazdarjanova and Guzowski, 2004). 

3.3.7 Fluorescence in situ hybridization 

 
This technique was conducted as previously described (Guzowski et al., 1999). A 

riboprobe for Arc was synthesized using a commercially available transcription kit (Ambion, 

Austin, TX). The Arc riboprobe was conjugated to digoxigenin-labeled UTP. Riboprobes were 

purified on a mini-quick spin column (Roche Applied Sciences, Montreal, PQ) and verified by gel 

electrophoresis. Slides were thawed, fixed in 4% formaldehyde, bathed in 0.5 % acetic 
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anhydride, methanol/acetone, equilibrated in SSC (saline-sodium citrate), and treated with 

100µl pre-hybridization buffer (Sigma-Aldrich Canada, Oakville, ON) at room temperature for 30 

minutes. The slides were then diluted in hybridization buffer (Sigma-Aldrich), denatured at 

90˚C, chilled on ice, treated with ~100ng of the riboprobe and then incubated in a humid 

chamber at 56˚C overnight. The slides were then bathed in a series of SSC washes, placed in 

RNase A (10 mg/ml, Sigma-Aldrich) at 37˚C, quenched with H2O2 and blocked with tyramide 

signal amplification blocking buffer (Perkin Elmer, Boston, MA) containing 5% normal sheep 

serum (Sigma-Aldrich). Slides were then incubated with anti-digoxigenin-HRP antibody (Roche) 

for 2 hours at room temperature, washed with Tris-buffered saline containing 0.05% Tween 20. 

The HRP-antibody conjugate was labeled with CY3 (cyanine-3) signal amplification kit (Perkin 

Elmer). The slides were counterstained with 4’-6-Diamidino-2-phenylindole (DAPI), coverslips 

were applied with Vectashield anti-fade mounting medium (Vector Laboratories, Burlington, 

ON) and sealed with nail polish.  

3.3.8 Image Analysis 

 
The size (total number of M/T cells expressing Arc) and pattern of the ensemble 

activated (which M/T cells expressed Arc in either their INF, cytoplasm or both) by each odour 

was determined by examining the compartmental expression of Arc. If, as hypothesized, STFP 

caused the preferred odour to induce a larger and more specific pattern of M/T cell activity, this 

suggests that the large body of data on the mechanisms of preference development through 

tactile stimulation may also apply to the STFP paradigm.  

Images of four different regions of the MOB were collected using an FV-1000 laser 

scanning confocal microscope (Olympus Canada, Mississauga, ON) at 40x magnification. For 



www.manaraa.com

NEURAL AND SOCIAL MECHANISMS BEHIND STFP      70  

consistency, photomultiplier tube assignments, pinhole size, and contrast values remained the 

same for each slide. Images were acquired by taking z-stacks (optical thickness, 1.1 µm; 

interval, 0.7 µm) in 4 random locations in the MOB in each of 3-4 slides per animal. Activation 

was quantified by examining the proportion of cells transcribing Arc during each odour epoch 

[i.e., cells containing Arc solely in INF, those containing Arc solely in the surrounding cytoplasm 

(CYTO) or both nucleic and cytoplasmic Arc (DOUBLE)] and generating a similarity score as 

described in previous literature (Vazdarjanova and Guzowski, 2004). Briefly, the similarity score 

could be calculated from the Arc expression during each epoch as follows: (1) Epoch 1 active 

cells = fraction of total cytoplasmic-positive cells [(CYTO + DOUBLE)/total cells]. (2) Epoch 2 

active cells = fraction of total nucleus-positive cells [(INF + DOUBLE)/total cells]. (3) p(E1E2) = 

epoch 1 active cells × epoch 2 active cells. This is the probability of cells being active in both 

epochs (i.e., DOUBLE), assuming the two epochs activated statistically independent neuronal 

ensembles. (4) diff(E1E2) = (DOUBLE) - p(E1E2). This is a measure of deviation from the 

independence hypothesis. (5) Least epoch = the smaller of the ensembles activated by epoch 1 

or epoch 2. (6) Similarity score = diff(E1E2)/(least epoch - p(E1E2). This normalizes the 

diff(E1E2) fraction to a perfect overlap. That is, complete overlap in the cell population 

recruited to epoch 1 and the population recruited to epoch 2 will yield a similarity score of 1.  A 

similarity score of 0 would result if the probability of recruiting the same cell to become active 

during both epochs is equal to simple random chance with replacement. 

3.3.9 Data Analysis 

 
Arc expression (total # of cells activated as well as location of expression cyto/INF/both) 

was analyzed using a 3 x 3 x 2 general factorial analysis of variance (ANOVA) using 
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demonstration type (i.e., live, surrogate, or none), number of odours experienced (i.e., 0, 1, or 

2), and the presence of social learning (i.e., yes, meaning a preference was imparted via live 

demonstration; or no, meaning that animals were exposed either to  surrogates or conspecifics 

without an odour matching any of the flavours to be tested) as factors.  Alpha was set to 0.05 

and all post-hoc tests were conducted using Tukey’s HSD, where appropriate.  All statistical 

analyses were carried out using the R statistical package (R core team, 2013). 

3.4 Results 

 
A total of 28,742 M/T cells were counted for the present analysis (1,029 ± 123 per 

animal).  The collected results demonstrate that, although odour identity seems to be encoded 

by odour specific patterns of MOB M/T cell activity, in agreement with previous data collected 

in this region (i.e., Shakhawat et al., 2014), the preference induced by STFP does not seem to 

alter these odour-specific patterns.  These results are discussed in further detail below. 

3.4.1 Arc Expression within MOB M/T Cells is Odour-Specific  

 
Comparable to previous studies, the current study shows that exposure to novel odours 

elicited Arc expression within significantly more M/T cells when compared to animals that 

remained within the home cage (Figure 3.5a).  This was demonstrated by a significant main 

effect of the number of odours experienced on the number of Arc-expressing cells during both 

epoch 1 (F2,18 = 7.885; p = 0.012) and epoch 2 (F2,18 = 7.981; p = 0.011).  Post-hoc analyses show 

that during both epochs, the number of cells expressing Arc in caged controls was significantly 

lower than animals exposed to 1 odour (epoch 1: p = 0.029; epoch 2: p = 0.030) or 2 (epoch 1: p 

= 0.024; epoch 2: p = 0.025).  The number of cells expressing Arc was not significantly different, 

however, between animals exposed to 1 vs 2 odours in either epoch 1 (p = 0.090) or epoch 2 (p 
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= 0.185).  This pattern is consistent with previous work examining MOB Arc expression (i.e., 

Shakhawat et al., 2014).  No significant differences were observed in the number of cells 

expressing Arc during either epoch on the basis of social learning (epoch 1: F1,18 = 0.588; p = 

0.453; epoch 2: F1,18 = 0.700, p = 0.794), or on the type of demonstration animals received 

(epoch 1: F2,18 = 0.091; p = 0.766; epoch 2: F2,18 = 0.015, p = 0.944). The most critical 

observation among animals, however, is not the number of cells that express Arc, but rather 

the pattern of that expression between the two epochs (shown in Figure 3.5c).  Similarity scores 

were found to differ significantly as a function of how many odors an animal was presented 

with (F2,18 = 10.237; p = 0.005).  Post-hoc tests showed that when animals were exposed to the 

same odour during both behavioral epochs, they were significantly more likely to express Arc in 

the same M/T cells during both time points (p = 0.003) relative to animals exposed to two 

distinct odours. These data are consistent with previous observations that the identity of an 

odour is encoded, in part, by the population of M/T cells recruited. 

3.4.2 Socially Transmitted Odour Preferences do not alter Arc Expression within MOB M/T 
Cells 

 
Social transmission of food preference with a live demonstrator had no significant effect 

on any measure of M/T cell activity recorded (Figure 3.5b).  Social transmission had no 

significant effect on the number of M/T cells active during either epoch 1 (F1,18 = 0.588, p = 

0.453), or epoch 2 (F1,18 =  0.070, p = 0.794).  Moreover, the similarity scores generated from 

animals (F1,18 = 0.144, p = 0.745) showed no significant differences as a result of the presence of 

a live demonstrator versus a surrogate during the demonstration phase of STFP.  Collectively, 

these data make it unlikely that STFP-induced odour preference are encoded by the pattern of 

recruitment in populations of M/T MOB cells. 
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Figure 3.5: Arc expression in the olfactory bulb encodes odour identity but not social preference. 

Analysis of the total number of M/T cells expressing Arc (A) show that either exposing animals to odours 

in the STFP paradigm induces significantly more Arc expression than can be seen in animals that 

remained in the home cage (black). This was true of animals that were not given a preference (white), 

animals exposed to a surrogate (light grey), and animals that were exposed to a live demonstrator (dark 

grey). Moreover, the induction of a social preference has no significant effect on the pattern of M/T cell 

activity among animals in the three exposure groups (B), as similarity scores generated from the three 

behavioral group were comparable. Unlike social preference training, however, the number of odours to 

which an animal was exposed significantly affected the pattern of Arc expression in M/T cells (C). 

Similarity scores show that significantly more M/T cells express Arc during both exposures if the 

exposures were to the same flavour of food, showing that the pattern of Arc expression in M/T cells is 

odour-specific.  Data are presented as mean ± SEM, * = p < 0.05 vs caged control; † = p < 0.05 vs 

repeated exposure to the same odour. 

3.5 Discussion  

 
Based on my experimental findings, the development of a preference through STFP did 

not induce a change in the number or pattern of M/T cells activated in response to an odour.  

This suggests that mechanisms involved in adult STFP may be different from those involved in 
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rat pup preference induction through the pairing of an odour with tactile stimuli. Thus, STFP is 

unlikely to be norepinephrine-dependent. Examination of mitral cell activity in my experiment 

showed odour specific patterns of Arc transcription, demonstrating that odour identity is 

encoded at the cellular level within the MOB. Since my findings revealed that preference 

information acquired by means of social interaction is not encoded within the MOB, further 

activity analysis of downstream processing within the accessory olfactory bulb (AOB) and 

piriform cortex (PC) may reveal where social information is integrated, therefore changing the 

cellular representation of a preferred odour upon re-exposure.  

In a study by Ross & Eichenbaum (2006), ventral hippocampal lesions (including 

subiculum) resulted in temporally graded retrograde amnesia if lesions were administered prior 

to day 21 following demonstrator/observer interaction. Since damage to the hippocampus has 

been shown to cause deficits in a rat’s ability to exhibit a preference following STFP, the 

integration of social (i.e., the presence of CS2) and odour information must occur somewhere 

between the MOB and the hippocampus (Bunsey & Eichenbaum, 1995; Alvarez et al., 2001; 

Clark et al., 2002). Since my MOB results did not show evidence of social information 

integration via a larger M/T cell ensemble, subsequent experiments should examine odour 

representations downstream of the MOB. Possible regions of interest could include the 

ipsilateral olfactory tubercle, pre-pyriform and pyriform cortices, ventrolateral entorhinal area, 

and anterior and posterolateral divisions of the cortical amygdaloid nucleus where MOB 

projections terminate (Scalia & Winans, 1975).  

Within the main olfactory epithelium, Munger et al. (2010) identified a specialized type 

of ORN vital for establishing a preference via STFP that express the receptor guanylyl cyclase 

(GC-D+). Receptors of this type were found to be highly sensitive to volatile CS2 and project 
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from main olfactory epithelium to the necklace glomeruli within the MOB. Mice lacking GC-D+ 

ORNs did not exhibit a food preference following STFP (Munger, et al., 2010). Although GC-D+ 

ORNs were found to be vital for detection of CS2, little is known about where this information is 

integrated with odour identity information processed via canonical glomeruli. Leinders-Zufall et 

al. (2007) showed that GC-D+ expressing ORNs project almost exclusively to the necklace 

glomeruli. However, the way that M/T cells of the necklace glomeruli respond to odourants 

makes it is unlikely that the integration of odour and social information happens in this region. 

The presence of a single peptide to which GC-D+ ORNs respond causes calcium transients in 

approximately 75% of necklace glomeruli neurons, and natural stimulants, such as dilute rodent 

urine, reliably elicit calcium transients from nearly 100% of these cells (Leinders-Zufall et al., 

2007). This suggests that the information contained in this network is binary (i.e., simply 

encodes the presence or absence of socially transmitted preference cues), and this information 

needs to be passed on and assimilated into odour representations elsewhere. It would be 

reasonable to assume that chemical information indicating saliency of an odour stimuli (CS2) 

may be integrated with odour information via canonical glomeruli at sites of MOB projection 

termination, such as the pyriform cortex.  

Operating in a parallel system to the canonical and necklace glomeruli of the MOB, 

there is a similar relationship between the vomeronasal organ (VO) and AOB as chemosensory 

information is detected and processed. Primary receptor neuron axons of the VO terminate in 

the AOB (Døving & Trotier, 1998). In the rat, the VO has primarily been studied in order to 

understand its role as a chemosensory organ for detection of socially relevant compounds, i.e. 

pheromones (Døving & Trotier, 1998). Located in the foremost part of the nasal cavity, the VO’s 

pheromone detecting abilities are thought to aid in facilitation and regulation of social 
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interactions (Døving & Trotier, 1998). In the context of reproductive behaviour, male guinea 

pigs with damage to their VO’s failed to mount conspecifics, while female guinea pigs had little 

interest in sexual partners, rarely reproduced, and did not show lordosis (Døving & Trotier, 

1998). Since the VO acts as a chemosensory organ and relays important social information, it is 

plausible that the ORNs located in this region could also detect the presence of CS2. If analysis 

downstream from the AOB is required, the medial amygdaloid nucleus and posteromedial 

portions of the cortical amygdaloid nucleus should be considered. Following lesion studies, 

these regions exhibited degradation indicative of their potential as sites of AOB termination 

(Scalia & Winans, 1975).  

The lack of significant differences in M/T cell recruitment following STFP may result 

from potential limitations of catFISH analysis. Although a larger recruitment of M/T cells is 

indicative of a preferred odour within the rat pup brain, perhaps the adult brain represents a 

preference through greater excitation (i.e., higher firing rates) of the already recruited cells. As 

described in this section 3.1, following neuronal activity that is sufficient enough to induce 

synaptic plasticity, Arc is transcribed. Using catFISH to analyse Arc expression, activity is 

analyzed based on the presence or absence of fluorescently labelled Arc within a cellular 

compartment, however, further increases in firing rates will not alter this observation. Based on 

a recent paper by Witharana and colleagues (2016), the level of brightness of fluorescence 

following catFISH may coincide with the amount of firing in an individual cell, although these 

data have yet to be replicated.   
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3.6 Conclusions  

 
Analysis of Arc expression within the MOB revealed that the induction of a social food 

preference does not alter the recruitment of M/T cells in response to the preferred odour. 

However, distinct activation patterns were present upon exposure to different odours. These 

data suggest that while differentiation of individual odours occurs reliably within the MOB, the 

integration of this information with social information likely takes place elsewhere.  
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Chapter 4: General Discussion 

 
By considering the significant and nonsignificant findings within my thesis, it is clear that 

factors affecting STFP likely interact in complex ways. In Chapter 2, following SF trials, individual 

preferences were largely degraded. This suggests that during SF an additional or alternate 

association between a food odour and a stimulus may have been formed resulting in a 

behavioural change. If by continuing the work done in Chapter 3, I am able to identify the 

neurological characteristics associated with a preferred odour in the pyriform cortex or AOB, I 

could investigate how the neural representation of a preferred odour may change before and 

after SF trials.   

There is experimental evidence to suggest that socially-derived preferences could 

reasonably continue to be established and altered by various social stimuli present during SF. 

Previous work by Leinders-Zufall et al. (2007) has established that the same olfactory 

subsystem that responds to CS2 also responds reliably to urine and feces, by binding specifically 

to guanylin and uroguanylin (peptides produced in the kidneys that are excreted in urine and 

feces). If during SF, a conspecific urinates or defecates in close proximity to the food dishes, 

these compounds in combination with the food odours present have the potential to alter food 

preferences previously established by STFP. For example, if a rat with a cocoa preference is 

exposed to a conspecific’s urine and cinnamon, as well as CS2 from a conspecific’s breath and 

cocoa during SF (or vice versa), these conflicting signals may lead to the observed degradation 

of food preference. Preference may then be re-established following SF as only one socially 

relevant chemical signal is being transmitted in combination with the food odour via 

demonstrator/observer interactions. Even if urination and/or defecation occurs during these 
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interactions, only one specific food odour is present, therefore the type of interference present 

during SF from two conflicting odours will not occur.   

In naturalistic settings, the marking of food sites by conspecifics can impart preferences 

in naïve rats (Laland & Plotkin, 1991). The results of preference tests pre- and post-SF in 

Chapter 2 may be consistent with this idea. To investigate this in an experimental setting, I 

could present a rat with two surrogate demonstrators simultaneously. One surrogate would be 

dipped in a combination of urine and a novel food odour while the other would be dipped in 

CS2 with an additional novel food odour. The resulting preference (or lack thereof) would help 

us to understand if one socially relevant chemical stimulus leads to the formation of a more 

robust food preference or if they are equally effective.   

Additionally, available data on the neurobiology of STFP indicates that the same system 

involving GC-D+ expressing ORNs, the necklace glomeruli, and ultimately the hippocampus, 

should drive both preference acquisition via CS2 and acquisition via urine peptides (although 

the site of the conjunctive information processing remains unknown). If the mechanisms 

responsible for updating preferences in SF and STFP are in fact the same, then knockdown of 

the ventral hippocampus and subiculum should ablate the updating and alteration of 

preferences during SF. 

Through analysis of personality, foraging behaviour, and gene expression within M/T cell 

ensembles, my thesis contributes to the understanding of both the social and neurological 

mechanisms behind STFP. As well, suggested future directions based on my findings may 

provide interesting avenues for extending this understanding.  
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